In this paper, we study the user scheduling prob-lem in a Low Earth Orbit (LEO) Multi-User Multiple-Input-Multiple-Output (MIMO) system. We propose an iterative graph-based maximum clique scheduling approach, in which users are grouped together based on a dissimilarity measure and served by the satellite via space-division multiple access (SDMA) by means of Minimum Mean Square Error (MMSE) digital beamforming on a cluster basis. User groups are then served in different time slots via time-division multiple access (TDMA). As dissimilarity measure, we consider both the channel coefficient of correlation and the users' great circle distance. A heuristic optimization of the optimal cluster size is performed in order to maximize the system capacity. To further validate our analysis, we compare our proposed graph-based schedulers with the well-established algorithm known as Multiple Antenna Downlink Orthogonal clustering (MADOC). Results are presented in terms of achievable per-user capacity and show the superiority in performance of the proposed schedulers w.r.t. MADOC.

Graph-Based User Scheduling Algorithms for LEO-MIMO Non-Terrestrial Networks

Riviello D. G.;
2023

Abstract

In this paper, we study the user scheduling prob-lem in a Low Earth Orbit (LEO) Multi-User Multiple-Input-Multiple-Output (MIMO) system. We propose an iterative graph-based maximum clique scheduling approach, in which users are grouped together based on a dissimilarity measure and served by the satellite via space-division multiple access (SDMA) by means of Minimum Mean Square Error (MMSE) digital beamforming on a cluster basis. User groups are then served in different time slots via time-division multiple access (TDMA). As dissimilarity measure, we consider both the channel coefficient of correlation and the users' great circle distance. A heuristic optimization of the optimal cluster size is performed in order to maximize the system capacity. To further validate our analysis, we compare our proposed graph-based schedulers with the well-established algorithm known as Multiple Antenna Downlink Orthogonal clustering (MADOC). Results are presented in terms of achievable per-user capacity and show the superiority in performance of the proposed schedulers w.r.t. MADOC.
2023
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
979-8-3503-1102-0
979-8-3503-1103-7
Beamforming
LEO
MMSE
MU-MIMO
User Scheduling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515969
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact