In this paper, we present a deep learning-based technique for channel estimation. By treating the time-frequency grid of the channel response as a low-resolution 2D-image, we propose a 5G-New Radio Convolutional Neural Network, called NR-ChannelNet, which can be properly trained to predict the channel coefficients. Our study employs a 3GPP-compliant 5G-New Radio simulator that can reproduce a realistic scenario by including multiple transmitting/receiving antenna schemes and clustered delay line channel model. Simulation results show that our deep learning approach can achieve competitive performance with respect to traditional techniques such as 2D-MMSE: indeed, under certain conditions, our new NR-ChannelNet approach achieves remarkable gains in terms of throughput.

A deep learning-based approach to 5G-new radio channel estimation

Riviello D. G.;
2021

Abstract

In this paper, we present a deep learning-based technique for channel estimation. By treating the time-frequency grid of the channel response as a low-resolution 2D-image, we propose a 5G-New Radio Convolutional Neural Network, called NR-ChannelNet, which can be properly trained to predict the channel coefficients. Our study employs a 3GPP-compliant 5G-New Radio simulator that can reproduce a realistic scenario by including multiple transmitting/receiving antenna schemes and clustered delay line channel model. Simulation results show that our deep learning approach can achieve competitive performance with respect to traditional techniques such as 2D-MMSE: indeed, under certain conditions, our new NR-ChannelNet approach achieves remarkable gains in terms of throughput.
2021
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
978-1-6654-1526-2
978-1-6654-1525-5
978-1-6654-3021-0
5G
Channel Estimation
Convolutional Neural Network
Deep Learning
New Radio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/515972
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact