Mn3Si2Te6 is a rare example of a layered ferrimagnet. It has recently been shown to host a colossal angular magnetoresistance as the spin orientation is rotated from the in- to out-of-plane direction, proposed to be underpinned by a topological nodal-line degeneracy in its electronic structure. Nonetheless, the origins of its ferrimagnetic structure remain controversial, while its experimental electronic structure, and the role of correlations in shaping this, are little explored to date. Here, we combine x-ray and photoemission-based spectroscopies with first-principles calculations to probe the elemental-selective electronic structure and magnetic order in Mn3Si2Te6. Through these, we identify a marked Mn-Te hybridization, which weakens the electronic correlations and enhances the magnetic anisotropy. We demonstrate how this strengthens the magnetic frustration in Mn3Si2Te6, which is key to stabilizing its ferrimagnetic order, and find a crucial role of both exchange interactions extending beyond nearest-neighbors and antisymmetric exchange in dictating its ordering temperature. Together, our results demonstrate a powerful methodology of using experimental electronic structure probes to constrain the parameter space for first-principles calculations of magnetic materials, and through this approach, reveal a pivotal role played by covalency in stabilizing the ferrimagnetic order in Mn3Si2Te6.
Covalency, correlations, and interlayer interactions governing the magnetic and electronic structure of Mn3Si2Te6
Bigi C.;Barone P.;Vinai G.;Polewczyk V.;Dagur D.;Mazzola F.;Picozzi S.;
2023
Abstract
Mn3Si2Te6 is a rare example of a layered ferrimagnet. It has recently been shown to host a colossal angular magnetoresistance as the spin orientation is rotated from the in- to out-of-plane direction, proposed to be underpinned by a topological nodal-line degeneracy in its electronic structure. Nonetheless, the origins of its ferrimagnetic structure remain controversial, while its experimental electronic structure, and the role of correlations in shaping this, are little explored to date. Here, we combine x-ray and photoemission-based spectroscopies with first-principles calculations to probe the elemental-selective electronic structure and magnetic order in Mn3Si2Te6. Through these, we identify a marked Mn-Te hybridization, which weakens the electronic correlations and enhances the magnetic anisotropy. We demonstrate how this strengthens the magnetic frustration in Mn3Si2Te6, which is key to stabilizing its ferrimagnetic order, and find a crucial role of both exchange interactions extending beyond nearest-neighbors and antisymmetric exchange in dictating its ordering temperature. Together, our results demonstrate a powerful methodology of using experimental electronic structure probes to constrain the parameter space for first-principles calculations of magnetic materials, and through this approach, reveal a pivotal role played by covalency in stabilizing the ferrimagnetic order in Mn3Si2Te6.File | Dimensione | Formato | |
---|---|---|---|
BC14583_proofs-4-13.pdf
accesso aperto
Descrizione: Proof - ©2023 American Physical Society
Tipologia:
Documento in Post-print
Licenza:
Altro tipo di licenza
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri |
WRAP-covalency-correlations-interlayer-interactions-governing-magnetic-electronic-structure-Mn3Si2Te6-2023.pdf
accesso aperto
Descrizione: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://wrap.warwick.ac.uk/178849.
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.07 MB
Formato
Adobe PDF
|
2.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.