The turbulent transition of the planar flow past the NACA0015 (National Advisory Committee for Aeronautics) profile is investigated at Reynolds number 180 000. Different angles of attack α from 0° to 23° are considered. The boundary layer instabilities and vortex formation in the wake are discussed in detail. Direct numerical simulations are performed at high spatial resolutions using an in-house Lagrangian vortex particle method called diffused vortex hydrodynamics. Lift and drag force coefficients are compared against experimental data, showing a good agreement up to the stall inception where turbulent three-dimensional effects are more important. Shedding and merging of near field eddies are also discussed. Time-frequency spectral maps of wall vorticity fluctuations are investigated in order to evaluate in-depth the observed flow characteristics and the identification of different transients. Using high time-space resolutions, this analysis represents one of the first approaches in literature for describing the two-dimensional turbulence generated by the flow past a body in terms of vorticity dynamics. All the numerical simulations are carried out for a long term in order to achieve statistically consistent regimes.
Numerical simulations of the transition from laminar to turbulent regimes of planar viscous flows past airfoils
Durante, D.Primo
;Pilloton, C.
Secondo
;Colagrossi, A.Ultimo
2024
Abstract
The turbulent transition of the planar flow past the NACA0015 (National Advisory Committee for Aeronautics) profile is investigated at Reynolds number 180 000. Different angles of attack α from 0° to 23° are considered. The boundary layer instabilities and vortex formation in the wake are discussed in detail. Direct numerical simulations are performed at high spatial resolutions using an in-house Lagrangian vortex particle method called diffused vortex hydrodynamics. Lift and drag force coefficients are compared against experimental data, showing a good agreement up to the stall inception where turbulent three-dimensional effects are more important. Shedding and merging of near field eddies are also discussed. Time-frequency spectral maps of wall vorticity fluctuations are investigated in order to evaluate in-depth the observed flow characteristics and the identification of different transients. Using high time-space resolutions, this analysis represents one of the first approaches in literature for describing the two-dimensional turbulence generated by the flow past a body in terms of vorticity dynamics. All the numerical simulations are carried out for a long term in order to achieve statistically consistent regimes.File | Dimensione | Formato | |
---|---|---|---|
POF24-AR-09010.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
6.57 MB
Formato
Adobe PDF
|
6.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.