According to the well-known concept of multicomponent high-entropy alloys, high entropy of mixing can stabilize the formation of solid solutions (simple bcc or fcc crystal structure) during solidification. Stabilization of the solid solution and prevention of the formation of intermetallic phases during solidification is provided by the high entropy of mixing in the solid and liquid states. High-entropy alloys have increased strength, high hardness, thermal stability in combination with good resistance to oxidation and corrosion. These properties allow to significantly expand the scope of these alloys. In this work, the electrical resistivity, thermoelectric power and surface tension of binary Cu–Sn, Cu–Ga and Cu–Bi alloys, which are the sub-system components of model low-temperature high-entropy Bi–Cu–Ga–Pb–Sn alloys, have been studied in a wide temperature range including solid and liquid states. The lack of the surface tension data of the above-mentioned alloys is compensated by the model predicted values.

Thermophysical Properties of Cu-Based Subsystems of High-Entropy Alloys

Rada Novakovic
Penultimo
Data Curation
;
2024

Abstract

According to the well-known concept of multicomponent high-entropy alloys, high entropy of mixing can stabilize the formation of solid solutions (simple bcc or fcc crystal structure) during solidification. Stabilization of the solid solution and prevention of the formation of intermetallic phases during solidification is provided by the high entropy of mixing in the solid and liquid states. High-entropy alloys have increased strength, high hardness, thermal stability in combination with good resistance to oxidation and corrosion. These properties allow to significantly expand the scope of these alloys. In this work, the electrical resistivity, thermoelectric power and surface tension of binary Cu–Sn, Cu–Ga and Cu–Bi alloys, which are the sub-system components of model low-temperature high-entropy Bi–Cu–Ga–Pb–Sn alloys, have been studied in a wide temperature range including solid and liquid states. The lack of the surface tension data of the above-mentioned alloys is compensated by the model predicted values.
2024
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE) - Sede Secondaria Genova
High-entropy alloys
thermophysical properties
electrical resistivity
thermoelectric power
microstructure
File in questo prodotto:
File Dimensione Formato  
2024 PLEVACHUK Cu-based HEA.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.33 MB
Formato Adobe PDF
2.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/516151
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact