Aqueous phase reforming (APR) is a promising method for producing hydrogen from biomass-derived feedstocks. In this study, carbon-supported Pt catalysts containing particles of different sizes (below 3 nm) were deposited on different commercially available carbons (i.e., Vulcan XC72 and Ketjenblack EC-600JD) using the metal vapor synthesis approach, and their catalytic efficiency and stability were evaluated in the aqueous phase reforming of ethylene glycol, the simplest polyol containing both C–C and C–O bonds. High-surface-area carbon supports were found to stabilize Pt nanoparticles with a mean diameter of 1.5 nm, preventing metal sintering. In contrast, Pt single atoms and clusters (below 0.5 nm) were not stable under the reaction conditions, contributing minimally to catalytic activity and promoting particle growth. The most effective catalyst PtA/CK, containing a mean Pt NP size of 1.5 nm and highly dispersed on Ketjenblack carbon, demonstrated high hydrogen site time yield (8.92 min−1 at 220 °C) and high stability under both high-temperature treatment conditions and over several recycling runs. The catalyst was also successfully applied to the APR of polyethylene terephthalate (PET), showing potential for hydrogen production from plastic waste.
Aqueous Phase Reforming by Platinum Catalysts: Effect of Particle Size and Carbon Support
Nguyen, Xuan Trung;Pitzalis, Emanuela;Filippi, Jonathan;Oberhauser, Werner;Evangelisti, Claudio
2024
Abstract
Aqueous phase reforming (APR) is a promising method for producing hydrogen from biomass-derived feedstocks. In this study, carbon-supported Pt catalysts containing particles of different sizes (below 3 nm) were deposited on different commercially available carbons (i.e., Vulcan XC72 and Ketjenblack EC-600JD) using the metal vapor synthesis approach, and their catalytic efficiency and stability were evaluated in the aqueous phase reforming of ethylene glycol, the simplest polyol containing both C–C and C–O bonds. High-surface-area carbon supports were found to stabilize Pt nanoparticles with a mean diameter of 1.5 nm, preventing metal sintering. In contrast, Pt single atoms and clusters (below 0.5 nm) were not stable under the reaction conditions, contributing minimally to catalytic activity and promoting particle growth. The most effective catalyst PtA/CK, containing a mean Pt NP size of 1.5 nm and highly dispersed on Ketjenblack carbon, demonstrated high hydrogen site time yield (8.92 min−1 at 220 °C) and high stability under both high-temperature treatment conditions and over several recycling runs. The catalyst was also successfully applied to the APR of polyethylene terephthalate (PET), showing potential for hydrogen production from plastic waste.File | Dimensione | Formato | |
---|---|---|---|
catalysts-14-00798.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
7.81 MB
Formato
Adobe PDF
|
7.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.