Deep learning solutions for image classification are more and more widespread and sophisticated today, bringing the necessity to properly address their reliability. Many approaches exist in uncertainty quantification, and, among these, conformal prediction is one of most solid and well-established frameworks. In this paper, we study another approach, defined as deep probabilistic scaling, based on the notion of scalable classifiers, combined with probabilistic scaling from order statistics. Given a pre-trained neural network for (binary) image classification and a target class on which it is desirable to control the error, this method is able to bound that error to a user-defined level (epsilon). The method individuates probabilistic safety regions of target class samples correctly predicted in high probability. We show how the proposed method links with conformal prediction, discussing analogies and differences. By considering a (binary) convolutional neural network classifier, experiments on several benchmark datasets show a good overall performance of the methodology in controlling false negatives.

A probabilistic scaling approach to conformal predictions in binary image classification

Alberto Carlevaro
Primo
;
Sara Narteni
Secondo
;
Fabrizio Dabbene;Maurizio Mongelli
Ultimo
2024

Abstract

Deep learning solutions for image classification are more and more widespread and sophisticated today, bringing the necessity to properly address their reliability. Many approaches exist in uncertainty quantification, and, among these, conformal prediction is one of most solid and well-established frameworks. In this paper, we study another approach, defined as deep probabilistic scaling, based on the notion of scalable classifiers, combined with probabilistic scaling from order statistics. Given a pre-trained neural network for (binary) image classification and a target class on which it is desirable to control the error, this method is able to bound that error to a user-defined level (epsilon). The method individuates probabilistic safety regions of target class samples correctly predicted in high probability. We show how the proposed method links with conformal prediction, discussing analogies and differences. By considering a (binary) convolutional neural network classifier, experiments on several benchmark datasets show a good overall performance of the methodology in controlling false negatives.
2024
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
uncertainty quantification, image classification, probabilistic scaling, conformal prediction
File in questo prodotto:
File Dimensione Formato  
COPA_2024_published.pdf

accesso aperto

Descrizione: Versione pubblicata
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 676.54 kB
Formato Adobe PDF
676.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/516350
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact