Extensive research has been conducted on utilizing phase change materials for cooling applications, making it one of the most explored techniques in this domain. This research paper presents a comprehensive performance evaluation of a latent heat thermal energy storage unit featuring three distinct macro-encapsulation designs for phase change materials. The study aims to assess the thermal performance, efficiency, and practical applicability of these macro-encapsulation designs in a storage system. The PCM macro-encapsulation designs under investigation include cylindrical and rectangular shapes, each possessing different geometry. Two different configurations have been considered in this study. One configuration contains same PCM mass in order to have similar storage capacity while the other configuration has maximum PCM mass that can be inserted inside the tank. The used phase change material is a salt hydrate with melting temperature of 17 °C. The experimental setup consists of a controlled test rig that simulates real-world conditions and enables the comparative analysis of the three designs. Key performance parameters such as the charging and discharging time, temperature profiles, heat transfer rate, and energy storage/retrieval rates are measured and analysed. The results obtained from the experimental study provide valuable insights into the thermal behaviour, energy storage capacity, and overall effectiveness of the three macro-encapsulation designs. It is important to mention that use of an encapsulation design is highly dependent on application. The findings of this study contribute to the understanding of the impact of different macro-encapsulation designs on performance of thermal energy storage units. The results serve as a basis for optimizing macro-encapsulation designs, improving the efficiency and reliability of latent heat storage systems, and promoting their wider adoption in various energy management applications.
Experimental evaluation of different macro-encapsulation designs for PCM storages for cooling applications
Rehman, Omais Abdur;Palomba, Valeria;Frazzica, Andrea;Brancato, Vincenza;
2023
Abstract
Extensive research has been conducted on utilizing phase change materials for cooling applications, making it one of the most explored techniques in this domain. This research paper presents a comprehensive performance evaluation of a latent heat thermal energy storage unit featuring three distinct macro-encapsulation designs for phase change materials. The study aims to assess the thermal performance, efficiency, and practical applicability of these macro-encapsulation designs in a storage system. The PCM macro-encapsulation designs under investigation include cylindrical and rectangular shapes, each possessing different geometry. Two different configurations have been considered in this study. One configuration contains same PCM mass in order to have similar storage capacity while the other configuration has maximum PCM mass that can be inserted inside the tank. The used phase change material is a salt hydrate with melting temperature of 17 °C. The experimental setup consists of a controlled test rig that simulates real-world conditions and enables the comparative analysis of the three designs. Key performance parameters such as the charging and discharging time, temperature profiles, heat transfer rate, and energy storage/retrieval rates are measured and analysed. The results obtained from the experimental study provide valuable insights into the thermal behaviour, energy storage capacity, and overall effectiveness of the three macro-encapsulation designs. It is important to mention that use of an encapsulation design is highly dependent on application. The findings of this study contribute to the understanding of the impact of different macro-encapsulation designs on performance of thermal energy storage units. The results serve as a basis for optimizing macro-encapsulation designs, improving the efficiency and reliability of latent heat storage systems, and promoting their wider adoption in various energy management applications.File | Dimensione | Formato | |
---|---|---|---|
pcm tests omais.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
8.99 MB
Formato
Adobe PDF
|
8.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.