The development of kinetic energy (KE) functionals is one of the current challenges in density functional theory (DFT). The Yukawa non-local KE functionals [Phys. Rev. B 103, 155127 (2021)] have been shown to describe accurately the Lindhard response of the homogeneous electron gas (HEG) directly in the real space, without any step in the reciprocal space. However, the Yukawa kernel employs an exponential function which cannot be efficiently represented in conventional Gaussian-based quantum chemistry codes. Here, we present an expansion of the Yukawa kernel in Gaussian functions. We show that for the HEG this expansion is independent of the electronic density, and that for general finite systems the accuracy can be easily tuned. Finally, we present results for atomistic sodium clusters of different sizes, showing that simple Yukawa functionals can give superior accuracy as compared to semilocal functionals.
Gaussian expansion of Yukawa non-local kinetic energy functionals: Application to metal clusters
Sarcinella, F.;Smiga, S.;Della Sala, F.;Fabiano, E.
2023
Abstract
The development of kinetic energy (KE) functionals is one of the current challenges in density functional theory (DFT). The Yukawa non-local KE functionals [Phys. Rev. B 103, 155127 (2021)] have been shown to describe accurately the Lindhard response of the homogeneous electron gas (HEG) directly in the real space, without any step in the reciprocal space. However, the Yukawa kernel employs an exponential function which cannot be efficiently represented in conventional Gaussian-based quantum chemistry codes. Here, we present an expansion of the Yukawa kernel in Gaussian functions. We show that for the HEG this expansion is independent of the electronic density, and that for general finite systems the accuracy can be easily tuned. Finally, we present results for atomistic sodium clusters of different sizes, showing that simple Yukawa functionals can give superior accuracy as compared to semilocal functionals.File | Dimensione | Formato | |
---|---|---|---|
Int J of Quantum Chemistry - 2023 - Sarcinella - Gaussian expansion of Yukawa non‐local kinetic energy functionals .pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.18 MB
Formato
Adobe PDF
|
2.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.