We report on a computational study of DNA detection systems, based on the hybridization between a DNA target, present in solution, and its complementary probe tethered to a solid support. Classical all-atom molecular dynamics were used to simulate the association process and to fully characterize the motion of the formed duplex. The hybridization event starts with a random collision, controlled by diffusion. Subsequently, the resulting complex evolves in a few nanoseconds towards the final duplex, the latter being stable for the rest of the simulation time (70 ns). The complex adopted upright and tilted orientations, with respect to the functionalized layer, sometimes reaching it at hydrogen bonding distance. Although the duplex conformation fluctuated for the entire run, it remained close to a B-like structure.

DNA Hybridization Mechanism on Silicon Nanowires: a Molecular Dynamics Approach

S Monti;A Ferretti;G Prampolini;
2010

Abstract

We report on a computational study of DNA detection systems, based on the hybridization between a DNA target, present in solution, and its complementary probe tethered to a solid support. Classical all-atom molecular dynamics were used to simulate the association process and to fully characterize the motion of the formed duplex. The hybridization event starts with a random collision, controlled by diffusion. Subsequently, the resulting complex evolves in a few nanoseconds towards the final duplex, the latter being stable for the rest of the simulation time (70 ns). The complex adopted upright and tilted orientations, with respect to the functionalized layer, sometimes reaching it at hydrogen bonding distance. Although the duplex conformation fluctuated for the entire run, it remained close to a B-like structure.
2010
Istituto per i Processi Chimico-Fisici - IPCF
File in questo prodotto:
File Dimensione Formato  
prod_40319-doc_36565.pdf

non disponibili

Descrizione: DNA Hybridization Mechanism on Silicon Nanowires: a Molecular Dynamics Approach
Dimensione 3.65 MB
Formato Adobe PDF
3.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/51651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 7
social impact