Molecular via diffusion are affected by unreliability and inter symbol interference in case of single transmitter. A promising solution to these issues appears to be the adoption of a swarm of randomly distributed transmitting nano-devices and a single spherical receiver. However, such a perspective assumes the receiver as fully absorbing (i.e., able to absorb an unlimited number of molecules per second). In this letter, we show that, if this assumption is relaxed, increasing the number of point transmitters leads to a saturation effect which makes communication impossible when digital transmission is considered. By means of a first and second order spatio-temporal stochastic model, we analytically derive the maximum allowed point transmitters density before saturation arises, as a function of parameters such as the diffusion coefficient, the maximum number of absorbed molecules, and the number of previously transmitted symbols. The analysis is validated via Monte Carlo simulation.

Performance Limits of Spatially Distributed Molecular Communications With Receiver Saturation

Masini B. M.
Ultimo
2023

Abstract

Molecular via diffusion are affected by unreliability and inter symbol interference in case of single transmitter. A promising solution to these issues appears to be the adoption of a swarm of randomly distributed transmitting nano-devices and a single spherical receiver. However, such a perspective assumes the receiver as fully absorbing (i.e., able to absorb an unlimited number of molecules per second). In this letter, we show that, if this assumption is relaxed, increasing the number of point transmitters leads to a saturation effect which makes communication impossible when digital transmission is considered. By means of a first and second order spatio-temporal stochastic model, we analytically derive the maximum allowed point transmitters density before saturation arises, as a function of parameters such as the diffusion coefficient, the maximum number of absorbed molecules, and the number of previously transmitted symbols. The analysis is validated via Monte Carlo simulation.
2023
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
asynchronous transmission
diffusion
Molecular communications
point processes
spatiotemporal model
File in questo prodotto:
File Dimensione Formato  
Performance_Limits_of_Spatially_Distributed_Molecular_Communications_With_Receiver_Saturation.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/516512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact