The revolution of cooperative connected and automated vehicles is about to begin and a key milestone is the introduction of short range wireless communications between cars. Given the tremendous expected market growth, two different technologies have been standardized by international companies and consortia, namely IEEE 802.11p, out for nearly a decade, and short range cellular-vehicle-to-anything (C-V2X), of recent definition. In both cases, evolutions are under discussion. The former is only decentralized and based on a sensing before transmitting access, while the latter is based on orthogonal resources that can be also managed by an infrastructure. Although studies have been conducted to highlight advantages and drawbacks of both, doubts still remain. In this work, with a reference to the literature and the aid of large scale simulations in realistic urban and highway scenarios, we provide an insight in such a comparison, also trying to isolate the contribution of the physical and medium access control layers.

Survey and perspectives of vehicular Wi-Fi versus sidelink cellular-V2X in the 5G era

Masini B. M.
Penultimo
;
Zanella A.
Ultimo
2019

Abstract

The revolution of cooperative connected and automated vehicles is about to begin and a key milestone is the introduction of short range wireless communications between cars. Given the tremendous expected market growth, two different technologies have been standardized by international companies and consortia, namely IEEE 802.11p, out for nearly a decade, and short range cellular-vehicle-to-anything (C-V2X), of recent definition. In both cases, evolutions are under discussion. The former is only decentralized and based on a sensing before transmitting access, while the latter is based on orthogonal resources that can be also managed by an infrastructure. Although studies have been conducted to highlight advantages and drawbacks of both, doubts still remain. In this work, with a reference to the literature and the aid of large scale simulations in realistic urban and highway scenarios, we provide an insight in such a comparison, also trying to isolate the contribution of the physical and medium access control layers.
2019
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
IEEE 802.11bd
DSRC
ITS-G5, LTE-V2X, cellular-V2X, sidelink, PC5; 5G, cooperative awareness
vehicle-to-anything
connected and autonomous vehicles
vehicular networks
IEEE 802.11p
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/516534
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 115
  • ???jsp.display-item.citation.isi??? ND
social impact