Wireless technologies play a key role in the Industrial Internet of Things (IIoT) scenario, for the development of increasingly flexible and interconnected factory systems. A significant opportunity in this context is represented by the advent of Low Power Wide Area Network (LPWAN) wireless technologies, that enable a reliable, secure, and effective transmission of measurement data over long communication ranges and with very low power consumption. Nevertheless, reliability in harsh environments (as typically occurs in the industrial scenario) is a significant issue to deal with. Focusing on LoRaWAN, adaptive strategies can be profitably devised concerning the above tradeoff. To this aim, this paper proposes to exploit Reinforcement Learning (RL) techniques to design an adaptive LoRaWAN strategy for industrial applications. The RL is spreading in many fields since it allows the design of intelligent systems using a stochastic discrete-time system approach. The proposed technique has been implemented within a purposely designed simulator, allowing to draw a preliminary performance assessment in a real-world scenario. A high density of independent nodes per square km has been considered, showing a significant improvement (about 10%) of the overall reliability in terms of data extraction rate (DER) without compromising full compatibility with the standard specifications.

Adaptive LoRaWAN transmission exploiting reinforcement learning: The industrial case

Alberto Morato;Federico Tramarin;
2021

Abstract

Wireless technologies play a key role in the Industrial Internet of Things (IIoT) scenario, for the development of increasingly flexible and interconnected factory systems. A significant opportunity in this context is represented by the advent of Low Power Wide Area Network (LPWAN) wireless technologies, that enable a reliable, secure, and effective transmission of measurement data over long communication ranges and with very low power consumption. Nevertheless, reliability in harsh environments (as typically occurs in the industrial scenario) is a significant issue to deal with. Focusing on LoRaWAN, adaptive strategies can be profitably devised concerning the above tradeoff. To this aim, this paper proposes to exploit Reinforcement Learning (RL) techniques to design an adaptive LoRaWAN strategy for industrial applications. The RL is spreading in many fields since it allows the design of intelligent systems using a stochastic discrete-time system approach. The proposed technique has been implemented within a purposely designed simulator, allowing to draw a preliminary performance assessment in a real-world scenario. A high density of independent nodes per square km has been considered, showing a significant improvement (about 10%) of the overall reliability in terms of data extraction rate (DER) without compromising full compatibility with the standard specifications.
2021
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Reinforcement Learning, LoRa, LPWANs, ADR, Machine Learning, Artificial Intelligence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/516555
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact