With the disclosure of the human genome a new era for bio-medicine has arisen, characterized by the challenge to investigate pathogenic mechanisms, studying simultaneously metabolites, DNA, RNA, and proteins. As a result, the "omics" revolution boomed, giving birth to a new medicine named "omics-based medicine". Among the other "omics", proteomics has been widely used in medicine, since it can produce a more "holistic" overview of a disease and provide a " constellation" of possible specific markers, a molecular fingerprinting that defines the clinical condition of an individual. Endpoint of this comprehensive and detailed analysis is the "diagnostic-omics", i.e. the achievement of personalized diagnoses with obvious benefits for prevention and therapy and this goal can be reached only with a perfect integration between clinicians and proteomists. To impact on the possible key factors involved in the pathological processes, oligonucleotide-based knock-down strategies can be helpful. They exploit omics-derived molecular tools (antisense, siRNA, ribozymes, decoys, and aptamers) that can be used to inhibit, at transcriptional or post-transcriptional levels, the events leading to protein synthesis, thus decreasing its expression. The identification of the pivotal mechanisms involved in diseases using global, "scenic" approaches such as the "omics" ones, and the subsequent validation and detailed description of the processes by specific molecular tools, can result in a more preventive, predictive and personalized medicine.
Proteomics and personalized medicine
Rocchiccioli S.;Tedeschi L.;Citti L.;Cecchettini A.
2013
Abstract
With the disclosure of the human genome a new era for bio-medicine has arisen, characterized by the challenge to investigate pathogenic mechanisms, studying simultaneously metabolites, DNA, RNA, and proteins. As a result, the "omics" revolution boomed, giving birth to a new medicine named "omics-based medicine". Among the other "omics", proteomics has been widely used in medicine, since it can produce a more "holistic" overview of a disease and provide a " constellation" of possible specific markers, a molecular fingerprinting that defines the clinical condition of an individual. Endpoint of this comprehensive and detailed analysis is the "diagnostic-omics", i.e. the achievement of personalized diagnoses with obvious benefits for prevention and therapy and this goal can be reached only with a perfect integration between clinicians and proteomists. To impact on the possible key factors involved in the pathological processes, oligonucleotide-based knock-down strategies can be helpful. They exploit omics-derived molecular tools (antisense, siRNA, ribozymes, decoys, and aptamers) that can be used to inhibit, at transcriptional or post-transcriptional levels, the events leading to protein synthesis, thus decreasing its expression. The identification of the pivotal mechanisms involved in diseases using global, "scenic" approaches such as the "omics" ones, and the subsequent validation and detailed description of the processes by specific molecular tools, can result in a more preventive, predictive and personalized medicine.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.