Earth observation (EO) is crucial for addressing environmental and societal challenges, but it struggles with revisit times and spatial resolution. The EU-funded SURPRISE project aims to improve EO capabilities by studying space instrumentation using compressive sensing (CS) implemented through spatial light modulators (SLMs) based on micromirror arrays (MMAs) to improve the ground sampling distance. In the SURPRISE project, we studied the development of an MMA that meets the requirements of a CS-based geostationary instrument working in the visible (VIS) and mid-infrared (MIR) spectral ranges. This paper describes the optical simulation procedure and the results obtained for analyzing the performance of such an MMA with the goal of identifying a mirror design that would allow the device to meet the optical requirements of this specific application.

Considerations for a Micromirror Array Optimized for Compressive Sensing (VIS to MIR) in Space Applications

Palombi, Lorenzo;Raimondi, Valentina;
2024

Abstract

Earth observation (EO) is crucial for addressing environmental and societal challenges, but it struggles with revisit times and spatial resolution. The EU-funded SURPRISE project aims to improve EO capabilities by studying space instrumentation using compressive sensing (CS) implemented through spatial light modulators (SLMs) based on micromirror arrays (MMAs) to improve the ground sampling distance. In the SURPRISE project, we studied the development of an MMA that meets the requirements of a CS-based geostationary instrument working in the visible (VIS) and mid-infrared (MIR) spectral ranges. This paper describes the optical simulation procedure and the results obtained for analyzing the performance of such an MMA with the goal of identifying a mirror design that would allow the device to meet the optical requirements of this specific application.
2024
Istituto di Fisica Applicata - IFAC
compressive sensing
micromirror array
spatial light modulator
File in questo prodotto:
File Dimensione Formato  
jimaging-10-00282-v3.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.98 MB
Formato Adobe PDF
2.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/516691
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact