Supercapacitors have attracted considerable attention due to their advantages, including being lightweight and having rapid charge–discharge, a good rate capability, and high cyclic stability. Electrodes are one of the most important factors influencing the performance of supercapacitors. Herein, a three-dimensional network of rough and porous micropebbles of CeCu2Si2 has been prepared using a one-step procedure and tested for the first time as a supercapacitor electrode. The synthesized material was extensively characterized in a three-electrode configuration using different electrochemical techniques, such as cyclic voltammetry (CV), galvanostatic charge and discharge (GCD) tests, and electrochemical impedance spectroscopy (EIS). CeCu2Si2 shows rather high mass-capacitance values: 278 F/g at 1 A/g and 295 F/g at 10 mV/s. Moreover, the material exhibits remarkable long-term stability: 98% of the initial capacitance was retained after 20,000 cycles at 10 A/g and the Coulombic efficiency remains equal to 100% at the end of the cycles.

Rough and Porous Micropebbles of CeCu2Si2 for Energy Storage Applications

Nigro, Angela;Cirillo, Carla;Attanasio, Carmine;
2023

Abstract

Supercapacitors have attracted considerable attention due to their advantages, including being lightweight and having rapid charge–discharge, a good rate capability, and high cyclic stability. Electrodes are one of the most important factors influencing the performance of supercapacitors. Herein, a three-dimensional network of rough and porous micropebbles of CeCu2Si2 has been prepared using a one-step procedure and tested for the first time as a supercapacitor electrode. The synthesized material was extensively characterized in a three-electrode configuration using different electrochemical techniques, such as cyclic voltammetry (CV), galvanostatic charge and discharge (GCD) tests, and electrochemical impedance spectroscopy (EIS). CeCu2Si2 shows rather high mass-capacitance values: 278 F/g at 1 A/g and 295 F/g at 10 mV/s. Moreover, the material exhibits remarkable long-term stability: 98% of the initial capacitance was retained after 20,000 cycles at 10 A/g and the Coulombic efficiency remains equal to 100% at the end of the cycles.
2023
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN - Sede Secondaria Fisciano
CeCu2Si2
high capacitance
high stability
lanthanide elements
supercapacitor
File in questo prodotto:
File Dimensione Formato  
materials-16-07182.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.13 MB
Formato Adobe PDF
3.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/516783
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact