Structural defects, such as heteroatoms or atomic vacancies, are always present in materials and significantly affect their physical properties, in both positive or unwanted ways. Interestingly, defects generate an impressive range of functionalities in many materials, such as catalysis, electrical and thermal conductivity tuning, thermoelectricity, enhanced ion storage, magnetism, and others. These properties enable the use of defective materials in a great variety of technological applications. Here we review the principal properties generated by atomic vacancies in 2D compounds and thin films of transition metal dichalcogenides and the most consolidated methods for their formation and engineering. Eventually, we critically analysed the most important advantages, the limits and the current open challenges.

Atomic Vacancies in Transition Metal Dichalcogenides: Properties, Fabrication, and Limits

Cavallini, Massimiliano;Gentili, Denis
2022

Abstract

Structural defects, such as heteroatoms or atomic vacancies, are always present in materials and significantly affect their physical properties, in both positive or unwanted ways. Interestingly, defects generate an impressive range of functionalities in many materials, such as catalysis, electrical and thermal conductivity tuning, thermoelectricity, enhanced ion storage, magnetism, and others. These properties enable the use of defective materials in a great variety of technological applications. Here we review the principal properties generated by atomic vacancies in 2D compounds and thin films of transition metal dichalcogenides and the most consolidated methods for their formation and engineering. Eventually, we critically analysed the most important advantages, the limits and the current open challenges.
2022
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
atomic defects
doping
surface chemistry
thin films
transition metal dichalcogenides
File in questo prodotto:
File Dimensione Formato  
Atomic Vacancies in Transition Metal Dichalcogenides Properties Fabrication and Limits.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/516807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact