The spontaneous formation of dendritic aggregates is observed in a two-dimensional confined layered system consisting of a film composed of liquid crystal, dye and solvent cast above a polymer substrate. The observed aggregates are promoted by phase separation processes induced by dye diffusion and solvent evaporation. The growth properties of the aggregates are studied through the temporal evolution of their topological properties (surface, perimeter, fractal dimension). The fractal dimension of the completely formed structures, when they are coexistent with different types of structures, is consistent with theoretical and experimental values obtained for Diffusion-Limited Aggregates. Under different experimental conditions (temperature and local dye concentration) the structure forms without interactions with other kinds of structures, and its equilibrium fractal dimension is smaller. The fractal dimension is thus not a universal property of the observed structures, but rather depends on the experimental conditions.

Fractal aggregates evolution of methyl red in liquid crystal

Ciuchi F;Mazzulla A;
2009

Abstract

The spontaneous formation of dendritic aggregates is observed in a two-dimensional confined layered system consisting of a film composed of liquid crystal, dye and solvent cast above a polymer substrate. The observed aggregates are promoted by phase separation processes induced by dye diffusion and solvent evaporation. The growth properties of the aggregates are studied through the temporal evolution of their topological properties (surface, perimeter, fractal dimension). The fractal dimension of the completely formed structures, when they are coexistent with different types of structures, is consistent with theoretical and experimental values obtained for Diffusion-Limited Aggregates. Under different experimental conditions (temperature and local dye concentration) the structure forms without interactions with other kinds of structures, and its equilibrium fractal dimension is smaller. The fractal dimension is thus not a universal property of the observed structures, but rather depends on the experimental conditions.
2009
Istituto per i Processi Chimico-Fisici - IPCF
Fractals; macroscopic aggregates (including diffusion-limited aggregates) - Liquid crystals
File in questo prodotto:
File Dimensione Formato  
prod_40365-doc_2332.pdf

non disponibili

Descrizione: Fractal aggregates evolution of methyl red in liquid crystal
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/51684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact