In recent years, Atomic Force Microscope (AFM)-based nanolithography techniques have emerged as a very powerful approach for the machining of countless types of nanostructures. However, the conventional AFM-based nanolithography methods suffer from low efficiency, low rate of patterning, and high complexity of execution. In this frame, we first developed an easy and effective nanopatterning technique, termed Pulse-Atomic Force Lithography (P-AFL), with which we were able to pattern 2.5D nanogrooves on a thin polymer layer. Indeed, for the first time, we patterned nanogrooves with either constant or varying depth profiles, with sub-nanometre resolution, high accuracy, and reproducibility. In this paper, we present the results on the investigation of the effects of P-AFL parameters on 2.5D nanostructures’ morphology. We considered three main P-AFL parameters, i.e., the pulse’s amplitude (setpoint), the pulses’ width, and the distance between the following indentations (step), and we patterned arrays of grooves after a precise and well-established variation of the aforementioned parameters. Optimizing the nanolithography process, in terms of patterning time and nanostructures quality, we realized unconventional shape nanostructures with high accuracy and fidelity. Finally, a scanning electron microscope was used to confirm that P-AFL does not induce any damage on AFM tips used to pattern the nanostructures.
Investigation of the Effects of Pulse-Atomic Force Nanolithography Parameters on 2.5D Nanostructures’ Morphology
Pellegrino P.
Co-primo
;Farella I.
Co-primo
;Bramanti A. P.;Della Torre A.Writing – Review & Editing
;Quaranta F.;Rinaldi R.Ultimo
Funding Acquisition
2022
Abstract
In recent years, Atomic Force Microscope (AFM)-based nanolithography techniques have emerged as a very powerful approach for the machining of countless types of nanostructures. However, the conventional AFM-based nanolithography methods suffer from low efficiency, low rate of patterning, and high complexity of execution. In this frame, we first developed an easy and effective nanopatterning technique, termed Pulse-Atomic Force Lithography (P-AFL), with which we were able to pattern 2.5D nanogrooves on a thin polymer layer. Indeed, for the first time, we patterned nanogrooves with either constant or varying depth profiles, with sub-nanometre resolution, high accuracy, and reproducibility. In this paper, we present the results on the investigation of the effects of P-AFL parameters on 2.5D nanostructures’ morphology. We considered three main P-AFL parameters, i.e., the pulse’s amplitude (setpoint), the pulses’ width, and the distance between the following indentations (step), and we patterned arrays of grooves after a precise and well-established variation of the aforementioned parameters. Optimizing the nanolithography process, in terms of patterning time and nanostructures quality, we realized unconventional shape nanostructures with high accuracy and fidelity. Finally, a scanning electron microscope was used to confirm that P-AFL does not induce any damage on AFM tips used to pattern the nanostructures.| File | Dimensione | Formato | |
|---|---|---|---|
|
nanomaterials-12-04421-v2 (1).pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
6.98 MB
Formato
Adobe PDF
|
6.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


