The viability of fiber-optic frequency-domain Brillouin strain sensing for accurate high-resolution structural health monitoring, is demonstrated. High performances have been achieved by applying an iterative reconstruction algorithm which correctly takes into account the influence of the acoustic wave involved in Brillouin scattering. The quality of the reconstructions was confirmed by finite-element method (FEM) numerical simulations. A number of experiments with an aluminum beam under different load conditions are presented, demonstrating the potential benefits resulting from the use of SBS-based sensors in a wide range of structural health monitoring applications.

Accurate high-resolution fiber-optic distributed strain measurements for structural health monitoring

Bernini R;
2007

Abstract

The viability of fiber-optic frequency-domain Brillouin strain sensing for accurate high-resolution structural health monitoring, is demonstrated. High performances have been achieved by applying an iterative reconstruction algorithm which correctly takes into account the influence of the acoustic wave involved in Brillouin scattering. The quality of the reconstructions was confirmed by finite-element method (FEM) numerical simulations. A number of experiments with an aluminum beam under different load conditions are presented, demonstrating the potential benefits resulting from the use of SBS-based sensors in a wide range of structural health monitoring applications.
2007
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
Brillouin scattering
Strain sensors
Structural health monitoring
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/51688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact