We report for the first time the synthesis of [C(NH2)3]Cr(HCOO)3 stabilizing Cr2+ in formate perovskite, which adopts a polar structure and orders magnetically below 8 K. We discuss in detail the magnetic properties and their coupling to the crystal structure based on first-principles calculations, symmetry, and model Hamiltonian analysis. We establish a general model for the orbital magnetic moment of [C(NH2)3]M(HCOO)3 (M = Cr, Cu) based on perturbation theory, revealing the key role of the Jahn-Teller distortions. We also analyze their spin and orbital textures in k-space, which show unique characteristics.
Synthesis and Magnetic Properties of the Multiferroic [C(NH2)3]Cr(HCOO)3 Metal–Organic Framework: The Role of Spin–Orbit Coupling and Jahn–Teller Distortions
Barone, Paolo;Stroppa, Alessandro;
2023
Abstract
We report for the first time the synthesis of [C(NH2)3]Cr(HCOO)3 stabilizing Cr2+ in formate perovskite, which adopts a polar structure and orders magnetically below 8 K. We discuss in detail the magnetic properties and their coupling to the crystal structure based on first-principles calculations, symmetry, and model Hamiltonian analysis. We establish a general model for the orbital magnetic moment of [C(NH2)3]M(HCOO)3 (M = Cr, Cu) based on perturbation theory, revealing the key role of the Jahn-Teller distortions. We also analyze their spin and orbital textures in k-space, which show unique characteristics.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.