Large-Eddy Simulation is utilized to investigate the rotor–stator interaction within a centrifugal pump. Comparisons are presented across diffuser geometries for two values of the flow-rate. Decreasing the incidence angle on the diffuser blades at off-design is found the main source of higher pressure rise and lower overall values of turbulent kinetic energy within the pump, resulting in efficiency improvement. The impact on the second-order statistics of the flow is especially significant. However, the values of the pressure fluctuations acting on the diffuser blades, defining fatigue loads on them and cavitation phenomena, are found especially affected by the rotor–stator clearance. Results show that at reduced flow-rates the rotation of the diffuser blades around their mid camber is a better option than rotating them around their leading edge. They also suggest that at larger flow-rates the increased incidence on the diffuser blades causes pressure side separation and large shear layers populating the diffuser channels, not affecting substantially the region of interface between impeller and diffuser, but having detrimental effects on the performance of the latter. The rotation of the diffuser blades around their leading edge should be preferred when the pump operates at flow-rates larger than the design one, avoiding decreasing the rotor–stator gap, thus resulting in smoother rotor–stator interaction and lower pressure fluctuations.

LES investigation on the dependence of the flow through a centrifugal pump on the diffuser geometry

Posa, Antonio
2021

Abstract

Large-Eddy Simulation is utilized to investigate the rotor–stator interaction within a centrifugal pump. Comparisons are presented across diffuser geometries for two values of the flow-rate. Decreasing the incidence angle on the diffuser blades at off-design is found the main source of higher pressure rise and lower overall values of turbulent kinetic energy within the pump, resulting in efficiency improvement. The impact on the second-order statistics of the flow is especially significant. However, the values of the pressure fluctuations acting on the diffuser blades, defining fatigue loads on them and cavitation phenomena, are found especially affected by the rotor–stator clearance. Results show that at reduced flow-rates the rotation of the diffuser blades around their mid camber is a better option than rotating them around their leading edge. They also suggest that at larger flow-rates the increased incidence on the diffuser blades causes pressure side separation and large shear layers populating the diffuser channels, not affecting substantially the region of interface between impeller and diffuser, but having detrimental effects on the performance of the latter. The rotation of the diffuser blades around their leading edge should be preferred when the pump operates at flow-rates larger than the design one, avoiding decreasing the rotor–stator gap, thus resulting in smoother rotor–stator interaction and lower pressure fluctuations.
2021
Istituto di iNgegneria del Mare - INM (ex INSEAN)
Centrifugal pumps
Immersed-boundary method
Large-Eddy Simulation
Off-design working conditions
Pressure fluctuations
Rotor–stator interaction
File in questo prodotto:
File Dimensione Formato  
paper_pump_geometry_AAM_compressed.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 6.8 MB
Formato Adobe PDF
6.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517078
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 40
social impact