The discharge of wastewater from the mining industry has a critical ecological impact, potentially endangering both soil and marine ecosystems. Alternatively, recovering pure water and valuable materials from these hypersaline streams through a technologically efficient process, would help reduce the ecological impact of the waste, while providing a viable supply chain for raw materials such as magnesium, potassium and others, considered critical to the economy. In this context, this work aimed to simultaneously recover pure water and mineral salts from mine wastewater by membraneassisted crystallization (MAC). A prior theoretical study based on thermodynamic parameters attempted to predict salts precipitation at different temperatures. MAC tests were then performed at specific thermal gradients and feed pretreatment conditions, achieving preferential precipitation of solids products of different composition containing large quantities of Ca or Mg/K minerals from the real mine tailing wastewater. The experiments also demonstrated the central impact of heterogeneous nucleation effects.

Turning mine-tailing streams into sources of water and mineral salts in a membrane-sustained circular scenario

Enrica Fontananova
Primo
Funding Acquisition
;
Elvira Pantuso;Laura Donato;Elisa Esposito;Rosanna Rizzi;Rocco Caliandro;Gianluca Di Profio
Ultimo
Project Administration
2024

Abstract

The discharge of wastewater from the mining industry has a critical ecological impact, potentially endangering both soil and marine ecosystems. Alternatively, recovering pure water and valuable materials from these hypersaline streams through a technologically efficient process, would help reduce the ecological impact of the waste, while providing a viable supply chain for raw materials such as magnesium, potassium and others, considered critical to the economy. In this context, this work aimed to simultaneously recover pure water and mineral salts from mine wastewater by membraneassisted crystallization (MAC). A prior theoretical study based on thermodynamic parameters attempted to predict salts precipitation at different temperatures. MAC tests were then performed at specific thermal gradients and feed pretreatment conditions, achieving preferential precipitation of solids products of different composition containing large quantities of Ca or Mg/K minerals from the real mine tailing wastewater. The experiments also demonstrated the central impact of heterogeneous nucleation effects.
2024
Istituto per la Tecnologia delle Membrane - ITM
Istituto di Cristallografia - IC
mine-tailing streams
water and mineral salts
membrane-assisted crystallization
circular scenario
File in questo prodotto:
File Dimensione Formato  
s41545-024-00404-8.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.83 MB
Formato Adobe PDF
3.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517360
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact