Within cell nuclei, several biophysical processes occur in order to allow the correct activities of the genome such as transcription and gene regulation. To quantitatively investigate such processes, polymer physics models have been developed to unveil the molecular mechanisms underlying genome functions. Among these, phase-separation plays a key role since it controls gene activity and shapes chromatin spatial structure. In this paper, we review some recent experimental and theoretical progress in the field and show that polymer physics in synergy with numerical simulations can be helpful for several purposes, including the study of molecular condensates, gene-enhancer dynamics, and the three-dimensional reconstruction of real genomic regions.

The Physics of DNA Folding: Polymer Models and Phase-Separation

Prisco A.;
2022

Abstract

Within cell nuclei, several biophysical processes occur in order to allow the correct activities of the genome such as transcription and gene regulation. To quantitatively investigate such processes, polymer physics models have been developed to unveil the molecular mechanisms underlying genome functions. Among these, phase-separation plays a key role since it controls gene activity and shapes chromatin spatial structure. In this paper, we review some recent experimental and theoretical progress in the field and show that polymer physics in synergy with numerical simulations can be helpful for several purposes, including the study of molecular condensates, gene-enhancer dynamics, and the three-dimensional reconstruction of real genomic regions.
2022
Istituto di genetica e biofisica "Adriano Buzzati Traverso"- IGB - Sede Napoli
chromatin organization
gene regulation
molecular dynamics
phase transitions
phase-separation
polymer physics
File in questo prodotto:
File Dimensione Formato  
polymers-14-01918-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517452
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact