Organic Electronic platforms for biosensing are being demonstrated at a fast pace, especially in healthcare applications where the use of organic (semi-)conductive materials leads to devices that efficiently interface living matter. Nevertheless, interesting properties of organic (semi-)conductors are usually neglected in the development of (bio-)sensors. Among these, the non-linear response when operated under dynamic biasing conditions (i.e., with pulsed driving voltages), thus mimicking synaptic plasticity phenomena, offers promising and largely unexplored possibilities for bio-sensing. The artificial synaptic response's figures of merit reflect the composition of the surrounding environment and, ultimately, the ion concentration and dynamics at the organic (semi-)conductor/electrolyte interface. Therefore, new sensing strategies that rely on the effect of target analytes on the short-term plasticity response of Organic Neuromorphic Devices are being demonstrated. This work presents the development of a label-free Single Electrode Neuromorphic Device (SEND) specifically designed for in vivo real-time mapping of dopamine concentration. The device response is investigated as a function of the driving frequency, resulting in the determination of the optimal operational configuration for minimally invasive neuromorphic devices. It exhibits stable multi-parametric response in complex fluids, in brain's mechanical models and in vivo, enabling monitoring of local variations of dopamine concentration in the rat brain.

A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo

Murgia, Mauro;Biscarini, Fabio
2024

Abstract

Organic Electronic platforms for biosensing are being demonstrated at a fast pace, especially in healthcare applications where the use of organic (semi-)conductive materials leads to devices that efficiently interface living matter. Nevertheless, interesting properties of organic (semi-)conductors are usually neglected in the development of (bio-)sensors. Among these, the non-linear response when operated under dynamic biasing conditions (i.e., with pulsed driving voltages), thus mimicking synaptic plasticity phenomena, offers promising and largely unexplored possibilities for bio-sensing. The artificial synaptic response's figures of merit reflect the composition of the surrounding environment and, ultimately, the ion concentration and dynamics at the organic (semi-)conductor/electrolyte interface. Therefore, new sensing strategies that rely on the effect of target analytes on the short-term plasticity response of Organic Neuromorphic Devices are being demonstrated. This work presents the development of a label-free Single Electrode Neuromorphic Device (SEND) specifically designed for in vivo real-time mapping of dopamine concentration. The device response is investigated as a function of the driving frequency, resulting in the determination of the optimal operational configuration for minimally invasive neuromorphic devices. It exhibits stable multi-parametric response in complex fluids, in brain's mechanical models and in vivo, enabling monitoring of local variations of dopamine concentration in the rat brain.
2024
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
implantable electronics
in vivo dopamine sensing
organic neuromorphic electronics
short-term plasticity
File in questo prodotto:
File Dimensione Formato  
Adv Elect Materials - 2024 - Rondelli - A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.7 MB
Formato Adobe PDF
5.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact