: In the current work, we present a renewable alternative coating formulation made of durable titania nanoparticles and oxidized nanocellulose (TiO2NPs@OCNs) nanocomposites and sodium alginate (SA), to create an environmentally friendly and secure food packaging paper. OCNs sugarcane fibers are firstly hydrolyzed using ammonium persulphate (APS). Then, TiO2NPs@OCNs nanocomposites are made in situ with OCNs using a green water-based sol-gel synthesis. Gram (+) microorganisms as well as Gram (-) bacteria are used to test the antibacterial properties of the TiO2NPs@OCN dispersions. The results show that the TiO2NP@OCNs significantly decreases the growth for all bacterial species. The TiO2NP@OCNs nanocomposites are mixed with SA, and the resulting formulations are used to coat paper sheets. The corresponding physicochemical properties are evaluated using FTIR, TGA, AFM, SEM, and EDX. Furthermore, the mechanical strength, air permeability, and water vapor characteristics of the paper sheets treated with SA/TiO2NPs@OCN are carried out, resulting in a great improvement of these properties. Finally, the SA/TiO2NPs@OCNs coated papers have been used as packaging for strawberries. The findings demonstrate that coated papers could preserve strawberry quality better than unpacked fruit and extend strawberry shelf life from 6 to 18 days.

Immobilization of TiO2NP@ oxidized cellulose nanocrystals for paper-based active packaging materials

Toro R. G.;Cerri L.;Caschera D.
2023

Abstract

: In the current work, we present a renewable alternative coating formulation made of durable titania nanoparticles and oxidized nanocellulose (TiO2NPs@OCNs) nanocomposites and sodium alginate (SA), to create an environmentally friendly and secure food packaging paper. OCNs sugarcane fibers are firstly hydrolyzed using ammonium persulphate (APS). Then, TiO2NPs@OCNs nanocomposites are made in situ with OCNs using a green water-based sol-gel synthesis. Gram (+) microorganisms as well as Gram (-) bacteria are used to test the antibacterial properties of the TiO2NPs@OCN dispersions. The results show that the TiO2NP@OCNs significantly decreases the growth for all bacterial species. The TiO2NP@OCNs nanocomposites are mixed with SA, and the resulting formulations are used to coat paper sheets. The corresponding physicochemical properties are evaluated using FTIR, TGA, AFM, SEM, and EDX. Furthermore, the mechanical strength, air permeability, and water vapor characteristics of the paper sheets treated with SA/TiO2NPs@OCN are carried out, resulting in a great improvement of these properties. Finally, the SA/TiO2NPs@OCNs coated papers have been used as packaging for strawberries. The findings demonstrate that coated papers could preserve strawberry quality better than unpacked fruit and extend strawberry shelf life from 6 to 18 days.
2023
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Biopolymer nanocomposite
Eco-friendly extraction of OCN
Strawberry packaging
File in questo prodotto:
File Dimensione Formato  
2023_InternJournBiolMacromolec_TiO2.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4 MB
Formato Adobe PDF
4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517562
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact