Efficient electrical generation of mid-infrared light is challenging because of the dearth of materials with natural dipole-active electronic transitions in this spectral region. One approach to solve this problem is through quantum-engineering of the electron dispersion to create artificial transitions, as in quantum cascade devices. In this work we propose an alternative method to generate mid-infrared light, utilizing the coupling between longitudinal and transverse degrees of freedom due to the nonlocal optical response of nanoscopic polar dielectric crystals. Polar crystals support sub-diffraction photonic modes in the mid-infrared. They also support longitudinal phonons, which couple efficiently with electrical currents through the Fröhlich interaction. As we have shown in previous theoretical and experimental works, these two degrees of freedom can hybridize forming longitudinal-transverse polaritons. Here we theoretically demonstrate that longitudinal-transverse polaritons can be efficiently generated by electrical currents, leading to resonant narrowband photonic emission. This approach can therefore be utilised to electrically generate far-field mid-infrared photons in the absence of dipole-active electronic transitions, potentially underpinning a novel generation of mid-infrared optoelectronic devices.

Electrical generation of surface phonon polaritons

De Liberato S.
Ultimo
2023

Abstract

Efficient electrical generation of mid-infrared light is challenging because of the dearth of materials with natural dipole-active electronic transitions in this spectral region. One approach to solve this problem is through quantum-engineering of the electron dispersion to create artificial transitions, as in quantum cascade devices. In this work we propose an alternative method to generate mid-infrared light, utilizing the coupling between longitudinal and transverse degrees of freedom due to the nonlocal optical response of nanoscopic polar dielectric crystals. Polar crystals support sub-diffraction photonic modes in the mid-infrared. They also support longitudinal phonons, which couple efficiently with electrical currents through the Fröhlich interaction. As we have shown in previous theoretical and experimental works, these two degrees of freedom can hybridize forming longitudinal-transverse polaritons. Here we theoretically demonstrate that longitudinal-transverse polaritons can be efficiently generated by electrical currents, leading to resonant narrowband photonic emission. This approach can therefore be utilised to electrically generate far-field mid-infrared photons in the absence of dipole-active electronic transitions, potentially underpinning a novel generation of mid-infrared optoelectronic devices.
2023
Istituto di fotonica e nanotecnologie - IFN
electroluminescence
Fröhlich interaction
surface phonon polaritons
File in questo prodotto:
File Dimensione Formato  
10.1515_nanoph-2022-0765.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 7.47 MB
Formato Adobe PDF
7.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517579
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact