Ship classification algorithms based on the analysis of remote sensing data, e.g. Synthetic Aperture Radar (SAR) images, are examples of data processing methodologies that fulfill a crucial step in monitoring the marine environment. We compared the potential of different Deep Learning architectures with Vision Transformers (ViTs), a recent advancement in deep learning introducing an attention-based mechanism, for ship classification on imbalanced SAR data using F1-Score as metric.

Future fishery and deep learning

Awais Ch Muhammad
;
Moroni D.;Reggiannini M.
2024

Abstract

Ship classification algorithms based on the analysis of remote sensing data, e.g. Synthetic Aperture Radar (SAR) images, are examples of data processing methodologies that fulfill a crucial step in monitoring the marine environment. We compared the potential of different Deep Learning architectures with Vision Transformers (ViTs), a recent advancement in deep learning introducing an attention-based mechanism, for ship classification on imbalanced SAR data using F1-Score as metric.
2024
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Ship Classification, SAR, VGG, Attention-based mechanism
File in questo prodotto:
File Dimensione Formato  
FutureFisheryAndDeepLearning.pdf

accesso aperto

Descrizione: Future fishery and deep learning
Tipologia: Altro materiale allegato
Licenza: Altro tipo di licenza
Dimensione 658.45 kB
Formato Adobe PDF
658.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact