Zinc biodegradable implants represent a revolutionary advancement in medical technology, offering a promising alternative to titanium and stainless-steel implants and avoiding the need for secondary surgeries for removal. In this study, we aimed to fulfil the clinical demand for biodegradable implant materials by applying a coating of double-doped strontium and copper resorbable tricalcium phosphate (SrCu-TCP) onto a zinc-lithium (Zn-Li) biodegradable alloy using the Pulsed Laser Deposition method. The coated surfaces were thoroughly characterized using X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Atomic Force Microscopy, and Scanning Electron Microscopy coupled with Energy Dispersive X-ray. Microbiology experiments were conducted to assess the inhibitory effects on the growth of various bacteria strains, including gram-positive Staphylococcus aureus and Enterococcus faecalis, gram-negative Pseudomonas aeruginosa and Escherichia coli, as well as the fungus Candida albicans. The obtained results showed that the roughness of the Zn-Li alloy increased from 91.8 ± 29.4 to 651.0 ± 179.5 nm when coated with SrCu-TCP. The thickness of the coating ranged between 3–3.5 µm. The inhibition of growth for all four bacteria strains and the fungus was in the range of 24–35% when cultured on SrCu-TCP coated Zn-Li samples. These findings suggest that the developed coatings are promising candidates for applications requiring inhibition of microorganisms.

Coated Biodegradable Zinc Lithium Alloys: Development and Characterization of Co-Doped Strontium Copper Tricalcium Phosphate Coating for Antimicrobial Applications

Rau J. V.
Primo
;
De Bonis A.;Fosca M.;
2024

Abstract

Zinc biodegradable implants represent a revolutionary advancement in medical technology, offering a promising alternative to titanium and stainless-steel implants and avoiding the need for secondary surgeries for removal. In this study, we aimed to fulfil the clinical demand for biodegradable implant materials by applying a coating of double-doped strontium and copper resorbable tricalcium phosphate (SrCu-TCP) onto a zinc-lithium (Zn-Li) biodegradable alloy using the Pulsed Laser Deposition method. The coated surfaces were thoroughly characterized using X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Atomic Force Microscopy, and Scanning Electron Microscopy coupled with Energy Dispersive X-ray. Microbiology experiments were conducted to assess the inhibitory effects on the growth of various bacteria strains, including gram-positive Staphylococcus aureus and Enterococcus faecalis, gram-negative Pseudomonas aeruginosa and Escherichia coli, as well as the fungus Candida albicans. The obtained results showed that the roughness of the Zn-Li alloy increased from 91.8 ± 29.4 to 651.0 ± 179.5 nm when coated with SrCu-TCP. The thickness of the coating ranged between 3–3.5 µm. The inhibition of growth for all four bacteria strains and the fungus was in the range of 24–35% when cultured on SrCu-TCP coated Zn-Li samples. These findings suggest that the developed coatings are promising candidates for applications requiring inhibition of microorganisms.
2024
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
biodegradable alloys
biodegradable coatings
coatings
copper and strontium co-doped tricalcium phosphate
copper and strontium doped tricalcium phosphate
tricalcium phosphate coatings
Zn-Li alloy
File in questo prodotto:
File Dimensione Formato  
Coatings2024(2).pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 9.88 MB
Formato Adobe PDF
9.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact