Time Resolved Photoluminescence (TRPL) measurements on the picosecond time scale (temporal resolution of 17 ps) on colloidal CdSe and CdSe/ZnS Quantum Dots (QDs) were performed. Transient PL spectra reveal three emission peaks with different lifetimes (60 ps, 460 ps and 9–10 ns, from the bluest to the reddest peak). By considering the characteristic decay times and by comparing the energetic separations among the states with those theoretically expected, we attribute the two higher energy peaks to ± 1Uand ± 1L bright states of the fine structure picture of spherical CdSe QDs, and the third one to surface states emission. We show that the contribution of surface emission to the PL results to be different for the two samples studied (67% in the CdSe QDs and 32% in CdSe/ZnS QDs), confirming the decisive role of the ZnS shell in the improvement of the surface passivation.

The role of intrinsic and surface states on the emission properties of colloidal CdSe and CdSe/ZnS Quantum Dots

Morello G.
Primo
;
Cozzoli P. D.;Manna L.;De Giorgi M.
2007

Abstract

Time Resolved Photoluminescence (TRPL) measurements on the picosecond time scale (temporal resolution of 17 ps) on colloidal CdSe and CdSe/ZnS Quantum Dots (QDs) were performed. Transient PL spectra reveal three emission peaks with different lifetimes (60 ps, 460 ps and 9–10 ns, from the bluest to the reddest peak). By considering the characteristic decay times and by comparing the energetic separations among the states with those theoretically expected, we attribute the two higher energy peaks to ± 1Uand ± 1L bright states of the fine structure picture of spherical CdSe QDs, and the third one to surface states emission. We show that the contribution of surface emission to the PL results to be different for the two samples studied (67% in the CdSe QDs and 32% in CdSe/ZnS QDs), confirming the decisive role of the ZnS shell in the improvement of the surface passivation.
2007
INFM (attivo dal 18/11/1923 al 31/12/2021)
colloidal nanocrystals
File in questo prodotto:
File Dimensione Formato  
nanoexpress-2007.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 268.21 kB
Formato Adobe PDF
268.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact