Insulin pumps and other smart devices have recently made significant advancements in the treatment of diabetes, a disorder that affects people all over the world. The development of medical AI has been influenced by AI methods designed to help physicians make diagnoses, choose a course of therapy, and predict outcomes. In this article, we thoroughly analyse how AI is being used to enhance and personalize diabetes treatment. The search turned up 77 original research papers, from which we've selected the most crucial information regarding the learning models employed, the data typology, the deployment stage, and the application domains. We identified two key trends, enabled mostly by AI: patient-based therapy personalization and therapeutic algorithm optimization. In the meanwhile, we point out various shortcomings in the existing literature, like a lack of multimodal database analysis or a lack of interpretability. The rapid improvements in AI and the expansion of the amount of data already available offer the possibility to overcome these difficulties shortly and enable a wider deployment of this technology in clinical settings.

Towards Personalized AI-Based Diabetes Therapy: A Review

Paragliola G.;
2024

Abstract

Insulin pumps and other smart devices have recently made significant advancements in the treatment of diabetes, a disorder that affects people all over the world. The development of medical AI has been influenced by AI methods designed to help physicians make diagnoses, choose a course of therapy, and predict outcomes. In this article, we thoroughly analyse how AI is being used to enhance and personalize diabetes treatment. The search turned up 77 original research papers, from which we've selected the most crucial information regarding the learning models employed, the data typology, the deployment stage, and the application domains. We identified two key trends, enabled mostly by AI: patient-based therapy personalization and therapeutic algorithm optimization. In the meanwhile, we point out various shortcomings in the existing literature, like a lack of multimodal database analysis or a lack of interpretability. The rapid improvements in AI and the expansion of the amount of data already available offer the possibility to overcome these difficulties shortly and enable a wider deployment of this technology in clinical settings.
2024
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR - Sede Secondaria Napoli
Artificial intelligence
Artificial intelligence
deep learning
diabetes
Diabetes
Glucose
Insulin
machine learning
Medical treatment
Optimization
patient-specific
personalization of care
Reviews
treatment optimization
wearable devices
File in questo prodotto:
File Dimensione Formato  
Towards_Personalized_AI-Based_Diabetes_Therapy_A_Review.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517911
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact