The use and integration of novel materials are increasingly becoming vital tools in the field of preventive conservation of cultural heritage. Chemical factors, such as volatile organic compounds (VOCs), but also environmental factors such as high relative humidity, can lead to degradation, oxidation, yellowing, and fading of the works of art. To prevent these phenomena, highly porous materials have been developed for the absorption of VOCs and for controlling the relative humidity. In this work, graphene and transition-metal dichalcogenides (TMDs) were combined to create three-dimensional aerogels that absorb certain harmful substances. More specifically, the addition of the TMDs molybdenum disulfide and tungsten disulfide in such macrostructures led to the selective absorption of ammonia. Moreover, the addition of the ionic liquid 1-hexadecyl-3-methylimidazolium chloride promoted higher rates of VOCs absorption and anti-fungal activity against the fungus Aspergillus niger. These two-dimensional materials outperform benchmark porous absorbers in the absorption of all the examined VOCs, such as ammonia, formic acid, acetic acid, formaldehyde, and acetaldehyde. Consequently, they can be used by museums, galleries, or even storage places for the perpetual protection of works of art.

Antifungal Hybrid Graphene–Transition-Metal Dichalcogenides Aerogels with an Ionic Liquid Additive as Innovative Absorbers for Preventive Conservation of Cultural Heritage

Messina E.;Di Carlo G.
;
2024

Abstract

The use and integration of novel materials are increasingly becoming vital tools in the field of preventive conservation of cultural heritage. Chemical factors, such as volatile organic compounds (VOCs), but also environmental factors such as high relative humidity, can lead to degradation, oxidation, yellowing, and fading of the works of art. To prevent these phenomena, highly porous materials have been developed for the absorption of VOCs and for controlling the relative humidity. In this work, graphene and transition-metal dichalcogenides (TMDs) were combined to create three-dimensional aerogels that absorb certain harmful substances. More specifically, the addition of the TMDs molybdenum disulfide and tungsten disulfide in such macrostructures led to the selective absorption of ammonia. Moreover, the addition of the ionic liquid 1-hexadecyl-3-methylimidazolium chloride promoted higher rates of VOCs absorption and anti-fungal activity against the fungus Aspergillus niger. These two-dimensional materials outperform benchmark porous absorbers in the absorption of all the examined VOCs, such as ammonia, formic acid, acetic acid, formaldehyde, and acetaldehyde. Consequently, they can be used by museums, galleries, or even storage places for the perpetual protection of works of art.
2024
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
aerogels
cultural heritage
graphene
ionic liquids
transition-metal dichalcogenides
volatile organic compounds
File in questo prodotto:
File Dimensione Formato  
Antifungal Hybrid Graphene-Transition-Metal Dichalcogenides Aerogels with an Ionic Liquid Additive as Innovative Absorbers for Preventive Conservation of Cultural Heritage.pdf

accesso aperto

Licenza: Creative commons
Dimensione 4.86 MB
Formato Adobe PDF
4.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact