New blend membranes consisting of a tuned ratio of polyvinylidene fluoride (PVDF) and alkali lignin (AL) were studied. Through the use of a green solvent like dimethyl sulfoxide, effective mixing between PVDF and AL was achieved, leading to the development of highly hydrophilic membranes with robust mechanical stability. Characterization methods confirmed the suitability of the blend for membrane preparation and its hydrophilic nature. A key aspect of the strategy involved hydrophilizing PVDF during the preparation process by blending it with AL in the pot. This approach aimed to streamline production by reducing the number of steps compared to post-treatment methods such as grafting or coating. The presence of hydrophobic/hydrophilic groups in the AL structure addressed the challenge of compatibility between PVDF and conventional hydrophilic polymers, enhancing interaction between the components. The resulting hydrophilic material exhibited improved pure water permeance and demonstrated resistance to irreversible fouling. The membrane's ability to process wastewater streams and its resistance to fouling was demonstrated by separating stable and uniform submicron oil-in-water emulsions with high rejection (>99.9 %) up to a volume reduction factor (VRF) of 7.7.
Polyvinylidene fluoride-alkali lignin blend: A new candidate for membranes development
Regina, Serena
Primo
;Poerio, Teresa;Mazzei, Rosalinda;Giorno, Lidietta
2024
Abstract
New blend membranes consisting of a tuned ratio of polyvinylidene fluoride (PVDF) and alkali lignin (AL) were studied. Through the use of a green solvent like dimethyl sulfoxide, effective mixing between PVDF and AL was achieved, leading to the development of highly hydrophilic membranes with robust mechanical stability. Characterization methods confirmed the suitability of the blend for membrane preparation and its hydrophilic nature. A key aspect of the strategy involved hydrophilizing PVDF during the preparation process by blending it with AL in the pot. This approach aimed to streamline production by reducing the number of steps compared to post-treatment methods such as grafting or coating. The presence of hydrophobic/hydrophilic groups in the AL structure addressed the challenge of compatibility between PVDF and conventional hydrophilic polymers, enhancing interaction between the components. The resulting hydrophilic material exhibited improved pure water permeance and demonstrated resistance to irreversible fouling. The membrane's ability to process wastewater streams and its resistance to fouling was demonstrated by separating stable and uniform submicron oil-in-water emulsions with high rejection (>99.9 %) up to a volume reduction factor (VRF) of 7.7.| File | Dimensione | Formato | |
|---|---|---|---|
|
1-s2.0-S2772421224000151-main.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.24 MB
Formato
Adobe PDF
|
4.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


