Spontaneous Raman is a well-established tool to probe molecular vibrations. Under resonant conditions, it is a largely used method for characterizing the structure of heme-proteins. In recent years, advances in pulsed laser sources allowed to explore vibrational features with complex techniques based on nonlinear optical interactions, among which is stimulated Raman scattering (SRS). Building on its combined spectral–temporal resolutions and high chemical sensitivities, SRS has been largely applied as a probe for ultrafast, time-resolved studies, as well as an imaging technique in biological systems. By using a frequency tunable, narrowband pump pulse jointly with a femtosecond white light continuum to initiate the SRS process, here we measure the Raman spectrum of a prototypical heme-protein, namely deoxy myoglobin, under two different electronic resonances. The SRS results are compared with the spontaneous Raman spectra, and the relative advantages, such as the capability of our experimental approach to provide an accurate mapping of Raman excitation profiles, are discussed.

Resonant broadband stimulated Raman scattering in myoglobin

Ferrante C.;Montemiglio L. C.;Cerullo G.;Scopigno T.
2018

Abstract

Spontaneous Raman is a well-established tool to probe molecular vibrations. Under resonant conditions, it is a largely used method for characterizing the structure of heme-proteins. In recent years, advances in pulsed laser sources allowed to explore vibrational features with complex techniques based on nonlinear optical interactions, among which is stimulated Raman scattering (SRS). Building on its combined spectral–temporal resolutions and high chemical sensitivities, SRS has been largely applied as a probe for ultrafast, time-resolved studies, as well as an imaging technique in biological systems. By using a frequency tunable, narrowband pump pulse jointly with a femtosecond white light continuum to initiate the SRS process, here we measure the Raman spectrum of a prototypical heme-protein, namely deoxy myoglobin, under two different electronic resonances. The SRS results are compared with the spontaneous Raman spectra, and the relative advantages, such as the capability of our experimental approach to provide an accurate mapping of Raman excitation profiles, are discussed.
2018
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN - Sede Secondaria L'Aquila
chemical physics
heme-proteins
nonlinear optics
resonance Raman spectroscopy
stimulated Raman scattering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/518161
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact