A crucial step in the race towards quantum advantage is optimizing quantum annealing using ad-hoc annealing schedules. Motivated by recent progress in the field, we propose to employ long-short term memory neural networks to automate the search for optimal annealing schedules for random Ising models on regular graphs. By training our network using locally-adiabatic annealing paths, we are able to predict optimal annealing schedules for unseen instances and even larger graphs than those used for training.

Deep learning optimal quantum annealing schedules for random Ising models

Passarelli G.;Cantele G.;Lucignano P.
2023

Abstract

A crucial step in the race towards quantum advantage is optimizing quantum annealing using ad-hoc annealing schedules. Motivated by recent progress in the field, we propose to employ long-short term memory neural networks to automate the search for optimal annealing schedules for random Ising models on regular graphs. By training our network using locally-adiabatic annealing paths, we are able to predict optimal annealing schedules for unseen instances and even larger graphs than those used for training.
2023
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
adiabatic quantum algorithms
machine learning
quantum annealing
quantum optimisation
File in questo prodotto:
File Dimensione Formato  
Hegde_2023_New_J._Phys._25_073013.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/518200
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact