To investigate thiol-disulfide interchange reactions in heated milk yielding non-native intramolecular rearranged and intermolecular cross-linked proteins, a proteomic study based on nanoLC-ESI-Q-Orbitrap-MS/MS and dedicated bioinformatics was accomplished. Raw milk samples heated for different times and various commercial dairy products were analyzed. Qualitative experiments on tryptic digests of resolved protein mixtures assigned the corresponding disulfide-linked peptides. Results confirmed the limited data available on few milk proteins, generated the widest inventory of components (63 in number) involved in thiol-disulfide exchange processes, and provided novel structural information on S-S-bridged molecules. Quantitative experiments on unresolved protein mixtures from both sample typologies estimated the population of molecules associated with thiol-disulfide reshuffling processes. Disulfide-linked peptides associated with native intramolecular S-S bonds generally showed a progressive reduction depending on heating time/harshness, whereas those related to specific non-native intramolecular/intermolecular ones showed an opposite quantitative trend. This was associated with a temperature-dependent augmented reactivity of definite native protein thiols and S-S bridges, which determined the formation of non-native rearranged monomers and cross-linked oligomers. Results provided novel information for possibly linking the nature and extent of thiol-disulfide exchange reactions in heated milk proteins to the corresponding functional and technological characteristics, with possible implications on food digestibility, allergenicity, and bioactivity.

Disulfide Bonds detection and characterization in milk proteins by 1-DE Electrophoresis and Mass Spectrometry approaches

Valentina Ciaravolo
Primo
;
Simona Arena
Secondo
;
Giovanni Renzone;Gianfranco Novi;Andrea Scaloni
2022

Abstract

To investigate thiol-disulfide interchange reactions in heated milk yielding non-native intramolecular rearranged and intermolecular cross-linked proteins, a proteomic study based on nanoLC-ESI-Q-Orbitrap-MS/MS and dedicated bioinformatics was accomplished. Raw milk samples heated for different times and various commercial dairy products were analyzed. Qualitative experiments on tryptic digests of resolved protein mixtures assigned the corresponding disulfide-linked peptides. Results confirmed the limited data available on few milk proteins, generated the widest inventory of components (63 in number) involved in thiol-disulfide exchange processes, and provided novel structural information on S-S-bridged molecules. Quantitative experiments on unresolved protein mixtures from both sample typologies estimated the population of molecules associated with thiol-disulfide reshuffling processes. Disulfide-linked peptides associated with native intramolecular S-S bonds generally showed a progressive reduction depending on heating time/harshness, whereas those related to specific non-native intramolecular/intermolecular ones showed an opposite quantitative trend. This was associated with a temperature-dependent augmented reactivity of definite native protein thiols and S-S bridges, which determined the formation of non-native rearranged monomers and cross-linked oligomers. Results provided novel information for possibly linking the nature and extent of thiol-disulfide exchange reactions in heated milk proteins to the corresponding functional and technological characteristics, with possible implications on food digestibility, allergenicity, and bioactivity.
2022
Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo - ISPAAM
978 88 3623 103 4
disulfide bond; heat treatment; milk proteins; proteomics; thiol-disulfide reshuffling
File in questo prodotto:
File Dimensione Formato  
ItPA_2022_Abstract.docx

accesso aperto

Descrizione: To investigate thiol-disulfide interchange reactions in heated milk yielding non-native intramolecular rearranged and intermolecular cross-linked proteins, a proteomic study based on nanoLC-ESI-Q-Orbitrap-MS/MS and dedicated bioinformatics was accomplished. Raw milk samples heated for different times and various commercial dairy products were analyzed. Qualitative experiments on tryptic digests of resolved protein mixtures assigned the corresponding disulfide-linked peptides. Results confirmed the limited data available on few milk proteins, generated the widest inventory of components (63 in number) involved in thiol-disulfide exchange processes, and provided novel structural information on S-S-bridged molecules. Quantitative experiments on unresolved protein mixtures from both sample typologies estimated the population of molecules associated with thiol-disulfide reshuffling processes. Disulfide-linked peptides associated with native intramolecular S-S bonds generally showed a progressive reduction depending on heating time/harshness, whereas those related to specific non-native intramolecular/intermolecular ones showed an opposite quantitative trend. This was associated with a temperature-dependent augmented reactivity of definite native protein thiols and S-S bridges, which determined the formation of non-native rearranged monomers and cross-linked oligomers. Results provided novel information for possibly linking the nature and extent of thiol-disulfide exchange reactions in heated milk proteins to the corresponding functional and technological characteristics, with possible implications on food digestibility, allergenicity, and bioactivity.
Tipologia: Abstract
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 14.41 kB
Formato Microsoft Word XML
14.41 kB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/518262
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact