The security of Internet of Things (IoT) networks is a pressing concern, as these networks are vulnerable to malicious attacks that can result in serious consequences. In this paper, we present a novel explainable Intrusion Detection System (IDS) capable of discriminating authentic from malicious network traffic within a IoT network of smart devices. The system adopts a Fuzzy Decision Tree as an eXplainable Artificial Intelligence (XAI) model for actually classifying the IoT network traffic. We evaluate the effectiveness of our approach considering the simulated attacks carried out by 3 devices of an IoT network, previously infected by a botnet. Preliminary results show that the proposed IDS, based on fuzzy decision trees, achieves promising results in terms of both explainability and ability to distinguish authentic traffic from 5 different types of malicious network traffic.
An Explainable Intrusion Detection System for IoT Networks
Fazzolari MichelaPrimo
;
2023
Abstract
The security of Internet of Things (IoT) networks is a pressing concern, as these networks are vulnerable to malicious attacks that can result in serious consequences. In this paper, we present a novel explainable Intrusion Detection System (IDS) capable of discriminating authentic from malicious network traffic within a IoT network of smart devices. The system adopts a Fuzzy Decision Tree as an eXplainable Artificial Intelligence (XAI) model for actually classifying the IoT network traffic. We evaluate the effectiveness of our approach considering the simulated attacks carried out by 3 devices of an IoT network, previously infected by a botnet. Preliminary results show that the proposed IDS, based on fuzzy decision trees, achieves promising results in terms of both explainability and ability to distinguish authentic traffic from 5 different types of malicious network traffic.| File | Dimensione | Formato | |
|---|---|---|---|
|
fazzolari2023anexplainable.pdf
solo utenti autorizzati
Descrizione: Authorized licensed use limited to: University of Pisa. Downloaded on December 13,2024 at 16:26:18 UTC from IEEE Xplore. Restrictions apply.
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
564.46 kB
Formato
Adobe PDF
|
564.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


