Purpose: To assess a radiomic machine learning (ML) model in classifying solid adrenal lesions (ALs) without fat signal drop on chemical shift (CS) as benign or malignant. Method: 55 indeterminate ALs (21 lipid poor adenomas, 15 benign pheocromocytomas, 1 oncocytoma, 12 metastases, 6 primary tumors) showing no fat signal drop on CS were retrospectively included. Manual 3D segmentation on T2-weighted and CS images was performed for subsequent radiomic feature extraction. After feature stability testing and an 80–20% train-test split, the train set was balanced via oversampling. Following a multi-step feature selection, an Extra Trees model was tuned with 5-fold stratified cross-validation in the train set and then tested on the hold-out test set. Results: A total of 3396 features were extracted from each AL, of which 133 resulted unstable while none had low variance (< 0.01). Highly correlated (r > 0.8) features were also excluded, leaving 440 parameters. Among these, Support Vector Machine 5-fold stratified cross-validated recursive feature elimination selected a subset of 6 features. ML obtained a cross-validation accuracy of 0.94 on the train and 0.91 on the test sets. Precision, recall and F1 score were respectively 0.92, 0.91 and 0.91. Conclusions: Our MRI handcrafted radiomics and ML pipeline proved useful to characterize benign and malignant solid indeterminate adrenal lesions.
Handcrafted MRI radiomics and machine learning: Classification of indeterminate solid adrenal lesions
Mainenti, Pier Paolo;
2021
Abstract
Purpose: To assess a radiomic machine learning (ML) model in classifying solid adrenal lesions (ALs) without fat signal drop on chemical shift (CS) as benign or malignant. Method: 55 indeterminate ALs (21 lipid poor adenomas, 15 benign pheocromocytomas, 1 oncocytoma, 12 metastases, 6 primary tumors) showing no fat signal drop on CS were retrospectively included. Manual 3D segmentation on T2-weighted and CS images was performed for subsequent radiomic feature extraction. After feature stability testing and an 80–20% train-test split, the train set was balanced via oversampling. Following a multi-step feature selection, an Extra Trees model was tuned with 5-fold stratified cross-validation in the train set and then tested on the hold-out test set. Results: A total of 3396 features were extracted from each AL, of which 133 resulted unstable while none had low variance (< 0.01). Highly correlated (r > 0.8) features were also excluded, leaving 440 parameters. Among these, Support Vector Machine 5-fold stratified cross-validated recursive feature elimination selected a subset of 6 features. ML obtained a cross-validation accuracy of 0.94 on the train and 0.91 on the test sets. Precision, recall and F1 score were respectively 0.92, 0.91 and 0.91. Conclusions: Our MRI handcrafted radiomics and ML pipeline proved useful to characterize benign and malignant solid indeterminate adrenal lesions.File | Dimensione | Formato | |
---|---|---|---|
magnetic resonance imaging 2021 stanzione surreni.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.89 MB
Formato
Adobe PDF
|
3.89 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.