In this chapter, we provide detailed instructions to perform quantitative reflectance imaging in a mouse model of a rare epidermal disorder caused by hyperactive connexin 26 hemichannels. Reflectance imaging is a versatile and powerful tool in dermatology, offering noninvasive, high-resolution insights into skin pathology, which is essential for both clinical practice and research. This approach offers several advantages and applications. Unlike traditional biopsy, reflectance imaging is noninvasive, allowing for real-time, in vivo examination of the skin. This is particularly valuable for monitoring chronic conditions or assessing the efficacy of treatments over time, enabling the detailed examination of skin morphology. This is crucial for identifying features of skin diseases such as cancers, inflammatory conditions, and infections. In therapeutic applications, reflectance imaging can be used to monitor the response of skin lesions to treatments. It can help in identifying the most representative area of a lesion for biopsy, thereby increasing the diagnostic accuracy. Reflectance imaging can also be used to diagnose and monitor inflammatory skin diseases, like psoriasis and eczema, by visualizing changes in skin structure and cellular infiltration. As the technology becomes more accessible, it has potential in telemedicine, allowing for remote diagnosis and monitoring of skin conditions. In academic settings, reflectance imaging can be a powerful research tool, enabling the study of skin pathology and the effects of novel treatments, including the development of monoclonal antibodies for therapeutic applications.
A Protocol for the Automated Assessment of Cutaneous Pathology in a Mouse Model of Hemichannel Dysfunction
Peres, ChiaraPrimo
;Mammano, FabioUltimo
2024
Abstract
In this chapter, we provide detailed instructions to perform quantitative reflectance imaging in a mouse model of a rare epidermal disorder caused by hyperactive connexin 26 hemichannels. Reflectance imaging is a versatile and powerful tool in dermatology, offering noninvasive, high-resolution insights into skin pathology, which is essential for both clinical practice and research. This approach offers several advantages and applications. Unlike traditional biopsy, reflectance imaging is noninvasive, allowing for real-time, in vivo examination of the skin. This is particularly valuable for monitoring chronic conditions or assessing the efficacy of treatments over time, enabling the detailed examination of skin morphology. This is crucial for identifying features of skin diseases such as cancers, inflammatory conditions, and infections. In therapeutic applications, reflectance imaging can be used to monitor the response of skin lesions to treatments. It can help in identifying the most representative area of a lesion for biopsy, thereby increasing the diagnostic accuracy. Reflectance imaging can also be used to diagnose and monitor inflammatory skin diseases, like psoriasis and eczema, by visualizing changes in skin structure and cellular infiltration. As the technology becomes more accessible, it has potential in telemedicine, allowing for remote diagnosis and monitoring of skin conditions. In academic settings, reflectance imaging can be a powerful research tool, enabling the study of skin pathology and the effects of novel treatments, including the development of monoclonal antibodies for therapeutic applications.File | Dimensione | Formato | |
---|---|---|---|
Peres2024ConnexinBook_Chapter13.pdf
solo utenti autorizzati
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
587.62 kB
Formato
Adobe PDF
|
587.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.