Four new conjugated polymers alternating benzothiadiazole units and thiophene moieties functionalized with ionic phosphonium or sulfonic acid salts in the side chains were synthesized by a postfunctionalization approach of polymeric precursors. The introduction of ionic groups makes the conjugated polymers soluble in water and/or polar solvents, allowing for the fabrication of bulk heterojunction (BHJ) solar cells using environmentally friendly conditions. All polymers were fully characterized by spectroscopic, thermal, electrochemical, X-ray diffraction, scanning electron, and atomic force techniques. BHJ solar cells were obtained from halogen-free solvents (i.e., ethanol and/or anisole) by blending the synthesized ionic push–pull polymers with a serinol-fullerene derivative or an ionic homopolymer acting as electron-acceptor (EA) or electron-donor (ED) counterparts, respectively. The device with the highest optical density and the smoothest surface of the active layer was the best-performing, showing a 4.76% photoconversion efficiency.

Ionic Push–Pull Polythiophenes: A Further Step towards Eco-Friendly BHJ Organic Solar Cells

Marinelli, Martina;Zanelli, Alberto;Di Maria, Francesca;
2022

Abstract

Four new conjugated polymers alternating benzothiadiazole units and thiophene moieties functionalized with ionic phosphonium or sulfonic acid salts in the side chains were synthesized by a postfunctionalization approach of polymeric precursors. The introduction of ionic groups makes the conjugated polymers soluble in water and/or polar solvents, allowing for the fabrication of bulk heterojunction (BHJ) solar cells using environmentally friendly conditions. All polymers were fully characterized by spectroscopic, thermal, electrochemical, X-ray diffraction, scanning electron, and atomic force techniques. BHJ solar cells were obtained from halogen-free solvents (i.e., ethanol and/or anisole) by blending the synthesized ionic push–pull polymers with a serinol-fullerene derivative or an ionic homopolymer acting as electron-acceptor (EA) or electron-donor (ED) counterparts, respectively. The device with the highest optical density and the smoothest surface of the active layer was the best-performing, showing a 4.76% photoconversion efficiency.
2022
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
anisole
bifunctional materials
donor–acceptor systems
eco-friendly BHJ solar cells
phosphonium salts
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/518999
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact