Vertical transport pathways in the ocean are still only partially understood despite their importance for biogeochemical, pollutant, and climate applications. Detailed measurements of a submesoscale frontal jet in the Alboran Sea (Mediterranean Sea) during a period of highly variable winds were made using cross-frontal velocity, density sections and dense arrays of surface drifters deployed across the front. The measurements show divergences as large as ±f implying vertical velocities of order 100 m/day for a ≈ 20 m thick surface layer. Over the 20 hr of measurement, the divergences made nearly one complete oscillation, suggesting an important role for near-inertial oscillations. A wind-forced slab model modified by the observed background frontal structure and with initial conditions matched to the data produces divergence oscillations and pattern compatible with that observed. Significant differences, though, are found in terms of mean divergence, with the data showing a prevalence of negative, convergent values. Despite the limitations in data sampling and model uncertainties, this suggests the contribution of other dynamical processes. Turbulent boundary layer processes are discussed, as a contributor to enhance the observed convergent phase. Water mass properties suggest that symmetric instabilities might also be present but do not play a crucial role, while downward stirring along displaced isopycnals is observed.

Inertial Oscillations and Frontal Processes in an Alboran Sea Jet: Effects on Divergence and Vertical Transport

Esposito G.;Berta M.
;
Centurioni L.;Griffa A.
2023

Abstract

Vertical transport pathways in the ocean are still only partially understood despite their importance for biogeochemical, pollutant, and climate applications. Detailed measurements of a submesoscale frontal jet in the Alboran Sea (Mediterranean Sea) during a period of highly variable winds were made using cross-frontal velocity, density sections and dense arrays of surface drifters deployed across the front. The measurements show divergences as large as ±f implying vertical velocities of order 100 m/day for a ≈ 20 m thick surface layer. Over the 20 hr of measurement, the divergences made nearly one complete oscillation, suggesting an important role for near-inertial oscillations. A wind-forced slab model modified by the observed background frontal structure and with initial conditions matched to the data produces divergence oscillations and pattern compatible with that observed. Significant differences, though, are found in terms of mean divergence, with the data showing a prevalence of negative, convergent values. Despite the limitations in data sampling and model uncertainties, this suggests the contribution of other dynamical processes. Turbulent boundary layer processes are discussed, as a contributor to enhance the observed convergent phase. Water mass properties suggest that symmetric instabilities might also be present but do not play a crucial role, while downward stirring along displaced isopycnals is observed.
2023
Istituto di Scienze Marine - ISMAR - Sede Secondaria Lerici
Alboran Sea (Med Sea)
drifters
frontal instabilities
near-inertial oscillations
slab model
vertical transport from surface divergence pattern
File in questo prodotto:
File Dimensione Formato  
JGR Oceans - 2023 - Esposito - Inertial Oscillations and Frontal Processes in an Alboran Sea Jet Effects on Divergence and.pdf

accesso aperto

Licenza: Creative commons
Dimensione 3.31 MB
Formato Adobe PDF
3.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/519040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact