Single-nucleotide polymorphisms in miRNA-machinery genes may alter the biogenesis of miRNAs affecting disease susceptibility. In this case-control study, we aimed to evaluate the impact of three single-nucleotide polymorphisms (DICER rs1057035, DROSHA rs10719, and XPO5 rs11077) and their combined effect in a genetic risk score model on congenital heart disease (CHD) risk. A total of 639 participants was recruited, including 125 patients with CHD (65 males; age 9.2 ± 10 years) and 514 healthy controls (289 males; age 15.8 ± 18 years). Genotyping of polymorphisms in miRNA-machinery genes was performed using a TaqMan®SNP genotyping assay. A genetic risk score was calculated by summing the number of risk alleles of selected single-nucleotide polymorphisms. There was a significantly increased risk of CHD in patients with XPO5 rs11077 CC genotype as compared to AC heterozygote and AA homozygote patients (ORadjusted = 1.7; 95% CI: 1.1-2.8; p = 0.018). A clear tendency to significance was also found for DROSHA rs10719 AA genotype and CHD risk for both codominant and recessive models (ORadjusted = 1.8; 95% CI: 0.91-3.8; p = 0.09 and ORadjusted = 1.9; 95% CI: 0.92-4; p = 0.08, respectively). The resulting genetic risk score predicted a 1.73 risk for CHD per risk allele (95% CI: 1.2-2.5; p = 0.002). Subjects in the top tertile of genetic risk score were estimated to have more than three-fold increased risk of CHD compared with those in the bottom tertile (ORadjusted = 3.52; 95% CI: 1.4-9; p = 0.009). Our findings show that the genetic variants in miRNA-machinery genes might participate in the development of CHD.
Individual and joint effects of genetic polymorphisms in microRNA-machinery genes on congenital heart disease susceptibility
Borghini A.
;Vecoli C.;Mercuri A.;Turchi S.;Andreassi M.
2021
Abstract
Single-nucleotide polymorphisms in miRNA-machinery genes may alter the biogenesis of miRNAs affecting disease susceptibility. In this case-control study, we aimed to evaluate the impact of three single-nucleotide polymorphisms (DICER rs1057035, DROSHA rs10719, and XPO5 rs11077) and their combined effect in a genetic risk score model on congenital heart disease (CHD) risk. A total of 639 participants was recruited, including 125 patients with CHD (65 males; age 9.2 ± 10 years) and 514 healthy controls (289 males; age 15.8 ± 18 years). Genotyping of polymorphisms in miRNA-machinery genes was performed using a TaqMan®SNP genotyping assay. A genetic risk score was calculated by summing the number of risk alleles of selected single-nucleotide polymorphisms. There was a significantly increased risk of CHD in patients with XPO5 rs11077 CC genotype as compared to AC heterozygote and AA homozygote patients (ORadjusted = 1.7; 95% CI: 1.1-2.8; p = 0.018). A clear tendency to significance was also found for DROSHA rs10719 AA genotype and CHD risk for both codominant and recessive models (ORadjusted = 1.8; 95% CI: 0.91-3.8; p = 0.09 and ORadjusted = 1.9; 95% CI: 0.92-4; p = 0.08, respectively). The resulting genetic risk score predicted a 1.73 risk for CHD per risk allele (95% CI: 1.2-2.5; p = 0.002). Subjects in the top tertile of genetic risk score were estimated to have more than three-fold increased risk of CHD compared with those in the bottom tertile (ORadjusted = 3.52; 95% CI: 1.4-9; p = 0.009). Our findings show that the genetic variants in miRNA-machinery genes might participate in the development of CHD.File | Dimensione | Formato | |
---|---|---|---|
individual-and-joint-effects-of-genetic-polymorphisms-in-microrna-machinery-genes-on-congenital-heart-disease-susceptibility (3).pdf
solo utenti autorizzati
Descrizione: Individual and joint effects of genetic polymorphisms in microRNA-machinery genes on congenital heart disease susceptibility
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
306.37 kB
Formato
Adobe PDF
|
306.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.