Lithium/sulfur batteries are one of the most promising technologies for the next-generation batteries. However, this technology suffers from several problems mainly related to the instability of metallic lithium and to the polysulfides (PS) shuttle. An approach to address such issues is the design of new separators or the modification of existing commercial ones. The use of hybrid membranes is here proposed to improve the performance of Li metal anode and sulfur cathode. Composite separators are obtained by electrospinning or drop-casting a polymer solution of polyvinylidenefluoride (PVdF) containing graphene oxide (GO) on a polyolefin commercial Celgard 2300 separator. This is the first time that a thin layer of electrospun PVdF/GO composite is applied to a polyolefin separator for the use in Li metal-based batteries. We demonstrate that electrospinning is an effective method to obtain a thin polymer layer of PVdF/GO. The electrospun layer improves the wettability of the separator; it is beneficial to the growth of “soft” dendrite on Li anode and has a positive effect on the PS shuttle process. The casted layer featuring a higher GO content is also effective in increasing the separator wettability, although with a minor effect on Li interphase.

Functional separators for the batteries of the future

De Giorgio F.;
2020

Abstract

Lithium/sulfur batteries are one of the most promising technologies for the next-generation batteries. However, this technology suffers from several problems mainly related to the instability of metallic lithium and to the polysulfides (PS) shuttle. An approach to address such issues is the design of new separators or the modification of existing commercial ones. The use of hybrid membranes is here proposed to improve the performance of Li metal anode and sulfur cathode. Composite separators are obtained by electrospinning or drop-casting a polymer solution of polyvinylidenefluoride (PVdF) containing graphene oxide (GO) on a polyolefin commercial Celgard 2300 separator. This is the first time that a thin layer of electrospun PVdF/GO composite is applied to a polyolefin separator for the use in Li metal-based batteries. We demonstrate that electrospinning is an effective method to obtain a thin polymer layer of PVdF/GO. The electrospun layer improves the wettability of the separator; it is beneficial to the growth of “soft” dendrite on Li anode and has a positive effect on the PS shuttle process. The casted layer featuring a higher GO content is also effective in increasing the separator wettability, although with a minor effect on Li interphase.
2020
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Electrospinning
Functional separator
Interphase
Lithium
PVdF/GO
File in questo prodotto:
File Dimensione Formato  
Terella et al_J Power Sources_449_2020.pdf

solo utenti autorizzati

Descrizione: Published paper
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.16 MB
Formato Adobe PDF
6.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/519311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact