The monitoring of plastics in freshwater ecosystems has witnessed a significant increase in recent years, driven by the awareness that approximately 80 % of marine plastic litter originates from terrestrial sources transported to the seas through lakes and rivers. Consequently, it is imperative to develop monitoring plans that offer a comprehensive understanding of plastic contamination in these aquatic environments, given their seasonal variations in hydrochemical characteristics and anthropogenic sources. Historically, most global lake monitoring campaigns have been limited to one-time or, at most, seasonal sampling. In this context, the primary objective of the present study was to assess the quantitative and qualitative monthly variations of floating plastics in Lake Maggiore, a large European lake with high ecological and economic significance. Twelve transverse transects were conducted from January to December 2022 using a Manta-net with a 100 μm mesh. Characterization of each plastic particle was performed using a μ-Fourier Transform Infrared Spectroscope (μFT-IR). The results revealed relatively low levels of contamination in Lake Maggiore when compared with other lakes worldwide exclusively from a secondary origin. However, a considerable heterogeneity was observed, both quantitatively and qualitatively. Notably, we identified a 13-fold difference between the minimum (0.02 plastics/m3 in September) and maximum (0.29 plastics/m3 in December) concentrations of plastics, accompanied by significant variations in polymer composition. Our monitoring underscored the necessity of also considering the temporal variation as a potential factor influencing plastic contamination in a lake. Moreover, frequent sampling emerged as a crucial requirement to accurately gauge the extent of plastic pollution, yielding robust and valuable data essential for effective environmental management.

Monthly variability of floating plastic contamination in Lake Maggiore (Northern Italy)

Galafassi, Silvia
Ultimo
2024

Abstract

The monitoring of plastics in freshwater ecosystems has witnessed a significant increase in recent years, driven by the awareness that approximately 80 % of marine plastic litter originates from terrestrial sources transported to the seas through lakes and rivers. Consequently, it is imperative to develop monitoring plans that offer a comprehensive understanding of plastic contamination in these aquatic environments, given their seasonal variations in hydrochemical characteristics and anthropogenic sources. Historically, most global lake monitoring campaigns have been limited to one-time or, at most, seasonal sampling. In this context, the primary objective of the present study was to assess the quantitative and qualitative monthly variations of floating plastics in Lake Maggiore, a large European lake with high ecological and economic significance. Twelve transverse transects were conducted from January to December 2022 using a Manta-net with a 100 μm mesh. Characterization of each plastic particle was performed using a μ-Fourier Transform Infrared Spectroscope (μFT-IR). The results revealed relatively low levels of contamination in Lake Maggiore when compared with other lakes worldwide exclusively from a secondary origin. However, a considerable heterogeneity was observed, both quantitatively and qualitatively. Notably, we identified a 13-fold difference between the minimum (0.02 plastics/m3 in September) and maximum (0.29 plastics/m3 in December) concentrations of plastics, accompanied by significant variations in polymer composition. Our monitoring underscored the necessity of also considering the temporal variation as a potential factor influencing plastic contamination in a lake. Moreover, frequent sampling emerged as a crucial requirement to accurately gauge the extent of plastic pollution, yielding robust and valuable data essential for effective environmental management.
2024
Istituto di Ricerca sulle Acque - IRSA - Sede Secondaria Verbania
(Micro)plastics
Environmental chemistry
Infra-red spectroscopy
Monthly variation
Surface waters
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/519531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact