We focus on an epidemiological model (the archetypical SIR system) defined on graphs and study the asymptotic behavior of the solutions as the number of vertices in the graph diverges. By relying on the theory of graphons we provide a characterization of the limit and establish convergence results. We also provide approximation results for both deterministic and random discretizations.

On the continuum limit of epidemiological models on graphs: Convergence and approximation results

Spinolo, Laura V.
2024

Abstract

We focus on an epidemiological model (the archetypical SIR system) defined on graphs and study the asymptotic behavior of the solutions as the number of vertices in the graph diverges. By relying on the theory of graphons we provide a characterization of the limit and establish convergence results. We also provide approximation results for both deterministic and random discretizations.
2024
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
continuum limit
Epidemiological models
graph limit
graphon
sampling
SIR
File in questo prodotto:
File Dimensione Formato  
2024 M3AS.pdf

solo utenti autorizzati

Descrizione: ON THE CONTINUUM LIMIT OF EPIDEMIOLOGICAL MODELS ON GRAPHS: CONVERGENCE AND APPROXIMATION RESULTS
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 763.82 kB
Formato Adobe PDF
763.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
M3AS_postprint.pdf

embargo fino al 30/04/2025

Descrizione: ON THE CONTINUUM LIMIT OF EPIDEMIOLOGICAL MODELS ON GRAPHS: CONVERGENCE AND APPROXIMATION RESULTS
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 479.15 kB
Formato Adobe PDF
479.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/519911
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact