We focus on an epidemiological model (the archetypical SIR system) defined on graphs and study the asymptotic behavior of the solutions as the number of vertices in the graph diverges. By relying on the theory of graphons we provide a characterization of the limit and establish convergence results. We also provide approximation results for both deterministic and random discretizations.
On the continuum limit of epidemiological models on graphs: Convergence and approximation results
Spinolo, Laura V.
2024
Abstract
We focus on an epidemiological model (the archetypical SIR system) defined on graphs and study the asymptotic behavior of the solutions as the number of vertices in the graph diverges. By relying on the theory of graphons we provide a characterization of the limit and establish convergence results. We also provide approximation results for both deterministic and random discretizations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2024 M3AS.pdf
solo utenti autorizzati
Descrizione: ON THE CONTINUUM LIMIT OF EPIDEMIOLOGICAL MODELS ON GRAPHS: CONVERGENCE AND APPROXIMATION RESULTS
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
763.82 kB
Formato
Adobe PDF
|
763.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
M3AS_postprint.pdf
embargo fino al 30/04/2025
Descrizione: ON THE CONTINUUM LIMIT OF EPIDEMIOLOGICAL MODELS ON GRAPHS: CONVERGENCE AND APPROXIMATION RESULTS
Tipologia:
Documento in Post-print
Licenza:
Altro tipo di licenza
Dimensione
479.15 kB
Formato
Adobe PDF
|
479.15 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.