Cyclodextrins (CDs) and mesoporous silica particles (MSPs) have been combined as composite carriers for controlled antibiotic release. CDs were employed as “gatekeeper” agents and grafted onto MSPs to retain drug molecules inside the MSP carrier. A variety of CDs (unfunctionalized, positively charged and carboxymethylated) and three different coupling strategies (covalent binding, electrostatic adsorption and inclusion complexation) were systematically investigated for their ability to control the release of two antibiotic drugs, metronidazole and clofazimine. The drugs had significantly different physicochemical properties (metronidazole − small hydrophilic, clofazimine- large hydrophobic). We report for the first time on the encapsulation and characterization of metronidazole-loaded-MSP. Each CD coating strategy reduced the drug release rate in phosphate buffer compared to unmodified MSP (from 20% to 100% retained drug). Covalent binding and inclusion complex approaches were significantly more effective than electrostatically adsorbed CD. In particular, the novel inclusion complex based on host/guest interaction between benzyl-modified silica surface and α-CD proved to be very effective (60–100% retained drug amount). Using pharmaceutical manufacturing processes, our study shows that CD-MSP composites can retain both hydrophobic and hydrophilic antibiotic compounds with potential translation to triggered release formulation targeting bacterial infections in the colon and lower intestine.

Cyclodextrin-mesoporous silica particle composites for controlled antibiotic release. A proof of concept toward colon targeting

Agnes M.;
2017

Abstract

Cyclodextrins (CDs) and mesoporous silica particles (MSPs) have been combined as composite carriers for controlled antibiotic release. CDs were employed as “gatekeeper” agents and grafted onto MSPs to retain drug molecules inside the MSP carrier. A variety of CDs (unfunctionalized, positively charged and carboxymethylated) and three different coupling strategies (covalent binding, electrostatic adsorption and inclusion complexation) were systematically investigated for their ability to control the release of two antibiotic drugs, metronidazole and clofazimine. The drugs had significantly different physicochemical properties (metronidazole − small hydrophilic, clofazimine- large hydrophobic). We report for the first time on the encapsulation and characterization of metronidazole-loaded-MSP. Each CD coating strategy reduced the drug release rate in phosphate buffer compared to unmodified MSP (from 20% to 100% retained drug). Covalent binding and inclusion complex approaches were significantly more effective than electrostatically adsorbed CD. In particular, the novel inclusion complex based on host/guest interaction between benzyl-modified silica surface and α-CD proved to be very effective (60–100% retained drug amount). Using pharmaceutical manufacturing processes, our study shows that CD-MSP composites can retain both hydrophobic and hydrophilic antibiotic compounds with potential translation to triggered release formulation targeting bacterial infections in the colon and lower intestine.
2017
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Clofazimine
Colon targeting
Controlled drug release
Cyclodextrin
Gatekeeper
Mesoporous silica particle
Metronidazole
File in questo prodotto:
File Dimensione Formato  
CD-mesoporous silica particle composites for controlled antibiotic release_A proof of concept toward colon targeting.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/520154
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact