In an effort to identify the optimal cyclodextrin (CD) host for delivery of penicillins to mammalian cells that will also offer protection against β-lactamase-induced hydrolysis, nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC) have been employed to study the inclusion complexes formed in aqueous solution between designed CD derivatives and two aminopenicillins, ampicillin and amoxicillin, and two antistaphylococcal penicillins, methicillin and oxacillin. Anionic and cationic thioether-substituted-β- and −γCD derivatives were thus synthesized and compared with the neutral, parent CDs for complexation with the penicillins. The synthesized derivatives were shown to present ∼20% elongated cavity space in solution. Moreover, the cationic ones are >98% protonated at physiological pH. The most efficient host was the positively charged octakis[6-(2-aminoethylthio)-6-deoxy]-γ-CD (γCys) that formed the strongest complex with oxacillin (Kb ∼1700 M−1) in an enthalpically and entropically favorable process (ΔHb = −10.5 kJ/mol, TΔSb = 8.0 kJ/mol). In vitro biological tests demonstrated that γCys reduces 2.3-fold the rate of hydrolysis of oxacillin in the presence of oxa-1 β-lactamase while displaying cell crossing capability and efficient internalization into macrophages as well as a sufficiently safe cytotoxicity profile. Overall, γCys could be considered as a promising vehicle for protection and delivery of oxacillin.

Designed positively charged cyclodextrin hosts with enhanced binding of penicillins as carriers for the delivery of antibiotics: The case of oxacillin

Agnes M.
Primo
;
2017

Abstract

In an effort to identify the optimal cyclodextrin (CD) host for delivery of penicillins to mammalian cells that will also offer protection against β-lactamase-induced hydrolysis, nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC) have been employed to study the inclusion complexes formed in aqueous solution between designed CD derivatives and two aminopenicillins, ampicillin and amoxicillin, and two antistaphylococcal penicillins, methicillin and oxacillin. Anionic and cationic thioether-substituted-β- and −γCD derivatives were thus synthesized and compared with the neutral, parent CDs for complexation with the penicillins. The synthesized derivatives were shown to present ∼20% elongated cavity space in solution. Moreover, the cationic ones are >98% protonated at physiological pH. The most efficient host was the positively charged octakis[6-(2-aminoethylthio)-6-deoxy]-γ-CD (γCys) that formed the strongest complex with oxacillin (Kb ∼1700 M−1) in an enthalpically and entropically favorable process (ΔHb = −10.5 kJ/mol, TΔSb = 8.0 kJ/mol). In vitro biological tests demonstrated that γCys reduces 2.3-fold the rate of hydrolysis of oxacillin in the presence of oxa-1 β-lactamase while displaying cell crossing capability and efficient internalization into macrophages as well as a sufficiently safe cytotoxicity profile. Overall, γCys could be considered as a promising vehicle for protection and delivery of oxacillin.
2017
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
ITC
NMR
Oxa-1 beta-lactamase
Oxacillin
Penicillins
pK
a
Positively charged cyclodextrin
File in questo prodotto:
File Dimensione Formato  
Designed positively charged CD hosts with enhanced binding of penicillins as carriers for the delivery of antibiotics_The case of oxacillin.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/520156
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact