Deposition at oblique vapor incidence angles can lead to the growth of thin films with dramatically changed morphological features. Herein, thin-film titanium nanocolumnar arrays were grown on a graphene monolayer/copper foil substrate (TiNCs/Gm-Cufoil) by applying a physical vapor deposition method, through magnetron sputtering at an oblique angle. Ti-nanocolumnar arrays with ca. 200 nm length were developed throughout the substrate with different morphologies depending on the substrate topography. It was found that over the as-fabricated electrocatalyst, the electrooxidation reaction of dopamine is facilitated, allowing quasi-reversible electrooxidation of protonated dopamine to dopamine quinone. Additionally, contrary to works that appeared in the literature, TiNCs/Gm-Cufoil also promotes further quasi-reversible oxidation of leucodopaminechrome to dopaminechrome. The electrode exhibited two linear ranges of dopamine detection (10–90 μM with a sensitivity value of 0.14 μAμM−1cm−2 and 100–400 μM with a sensitivity value of 0.095 μAμM−1cm−2), a good stability over time of about 30 days, and a good selectivity for dopamine detection.

Electrochemical Detection of Dopamine: Novel Thin-Film Ti-Nanocolumnar Arrays/Graphene Monolayer-Cufoil Electrodes

Lo Vecchio C.;Baglio V.;
2024

Abstract

Deposition at oblique vapor incidence angles can lead to the growth of thin films with dramatically changed morphological features. Herein, thin-film titanium nanocolumnar arrays were grown on a graphene monolayer/copper foil substrate (TiNCs/Gm-Cufoil) by applying a physical vapor deposition method, through magnetron sputtering at an oblique angle. Ti-nanocolumnar arrays with ca. 200 nm length were developed throughout the substrate with different morphologies depending on the substrate topography. It was found that over the as-fabricated electrocatalyst, the electrooxidation reaction of dopamine is facilitated, allowing quasi-reversible electrooxidation of protonated dopamine to dopamine quinone. Additionally, contrary to works that appeared in the literature, TiNCs/Gm-Cufoil also promotes further quasi-reversible oxidation of leucodopaminechrome to dopaminechrome. The electrode exhibited two linear ranges of dopamine detection (10–90 μM with a sensitivity value of 0.14 μAμM−1cm−2 and 100–400 μM with a sensitivity value of 0.095 μAμM−1cm−2), a good stability over time of about 30 days, and a good selectivity for dopamine detection.
2024
Istituto di Tecnologie Avanzate per l'Energia - ITAE
dopamine electrochemical sensor
graphene monolayer
magnetron sputtering
oblique angle deposition
thin-film electrode
titanium nanocolumnar arrays
File in questo prodotto:
File Dimensione Formato  
2024 Catalysts Brouzgou.pdf

accesso aperto

Descrizione: Articolo in rivista: Electrochemical Detection of Dopamine
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 8.04 MB
Formato Adobe PDF
8.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/520249
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact