As the adoption of Electric Vehicles (EVs) accelerates, driven by increasing urbanization and the push for sustainable infrastructure, the need for innovative solutions to support this growth has become more pressing. Vehicle-to-Grid (V2G) technology presents a promising solution by enabling EVs to engage in bidirectional interactions with the electrical grid. Through V2G, EVs can supply energy back to the grid during peak demand periods and draw power during off-peak times, offering a valuable tool for enhancing grid stability, improving energy management, and supporting environmental sustainability. Despite its potential, the large-scale implementation of V2G faces significant challenges, particularly from a technological and regulatory standpoint. The success of V2G requires coordinated efforts among various stakeholders, including vehicle manufacturers, infrastructure providers, grid operators, and policymakers. In addition to the technical barriers, such as battery degradation due to frequent charging cycles and the need for advanced bidirectional charging systems, regulatory frameworks must evolve to accommodate this new energy paradigm. This review aims to provide a comprehensive analysis of V2G technology, focusing on different perspectives—such as those of users, vehicles, infrastructures, and the electricity grid. This study will also explore ex ante, ex post, and ongoing assessment studies, alongside the experiences of pioneer cities in implementing V2G.

Electric Vehicles for a Flexible Energy System: Challenges and Opportunities

Micari S.;Napoli G.
Ultimo
Conceptualization
2024

Abstract

As the adoption of Electric Vehicles (EVs) accelerates, driven by increasing urbanization and the push for sustainable infrastructure, the need for innovative solutions to support this growth has become more pressing. Vehicle-to-Grid (V2G) technology presents a promising solution by enabling EVs to engage in bidirectional interactions with the electrical grid. Through V2G, EVs can supply energy back to the grid during peak demand periods and draw power during off-peak times, offering a valuable tool for enhancing grid stability, improving energy management, and supporting environmental sustainability. Despite its potential, the large-scale implementation of V2G faces significant challenges, particularly from a technological and regulatory standpoint. The success of V2G requires coordinated efforts among various stakeholders, including vehicle manufacturers, infrastructure providers, grid operators, and policymakers. In addition to the technical barriers, such as battery degradation due to frequent charging cycles and the need for advanced bidirectional charging systems, regulatory frameworks must evolve to accommodate this new energy paradigm. This review aims to provide a comprehensive analysis of V2G technology, focusing on different perspectives—such as those of users, vehicles, infrastructures, and the electricity grid. This study will also explore ex ante, ex post, and ongoing assessment studies, alongside the experiences of pioneer cities in implementing V2G.
2024
Istituto di Tecnologie Avanzate per l'Energia - ITAE
bidirectional charging
electric vehicles
infrastructure integration
smart cities
smart grids
sustainable mobility
vehicle-to-grid
File in questo prodotto:
File Dimensione Formato  
energies-17-05614.pdf

accesso aperto

Descrizione: Electric Vehicles for a Flexible Energy System: Challenges and Opportunities
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/520263
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact