This study proposes a method for determining the optimal period for crop yield prediction using Sentinel-2 Vegetation Index (VI) measurements. The method operates at the single-field scale to minimize the influence of external factors, such as soil type, topography, microclimate variations, and agricultural practices, which can significantly affect yield predictions. By analyzing historical VI data, the method identifies the best time window for yield prediction for specific crops and fields. It allows adjustments for different space–time intervals, crop types, cloud probability thresholds, and variable time composites. As a practical example, this method is applied to a wheat field in the Po River Valley, Italy, using NDVI data to illustrate how the approach can be implemented. Although applied in this specific context, the method is exportable and can be adapted to various agricultural settings. A key feature of the approach is its ability to classify variable-length periods, leveraging historical Sentinel-2 VI compositions to identify the optimal window for yield prediction. If applied in regions with frequent cloud cover, the method can also identify the most effective cloud probability threshold for improving prediction accuracy. This approach provides a tool for enhancing yield forecasting over fragmented agricultural landscapes

A Method to Determine the Optimal Period for Field-Scale Yield Prediction Using Sentinel-2 Vegetation Indices

Ciancia E.;Filizzola C.
Formal Analysis
;
2024

Abstract

This study proposes a method for determining the optimal period for crop yield prediction using Sentinel-2 Vegetation Index (VI) measurements. The method operates at the single-field scale to minimize the influence of external factors, such as soil type, topography, microclimate variations, and agricultural practices, which can significantly affect yield predictions. By analyzing historical VI data, the method identifies the best time window for yield prediction for specific crops and fields. It allows adjustments for different space–time intervals, crop types, cloud probability thresholds, and variable time composites. As a practical example, this method is applied to a wheat field in the Po River Valley, Italy, using NDVI data to illustrate how the approach can be implemented. Although applied in this specific context, the method is exportable and can be adapted to various agricultural settings. A key feature of the approach is its ability to classify variable-length periods, leveraging historical Sentinel-2 VI compositions to identify the optimal window for yield prediction. If applied in regions with frequent cloud cover, the method can also identify the most effective cloud probability threshold for improving prediction accuracy. This approach provides a tool for enhancing yield forecasting over fragmented agricultural landscapes
2024
Istituto di Metodologie per l'Analisi Ambientale - IMAA
remote sensing agriculture; crop monitoring techniques; field-level forecasting; phenological analysis; high-resolution vegetation data; S2 imagery applications; ideal timing acquisition; NDVI; clear pixel procedure; agricultural productivity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/520307
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact